首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The stabilization of long-term memories requires de novo protein synthesis. How can proteins, synthesized in the soma, act on specific synapses that participate in a given memory? We studied the dynamics of newly synthesized AMPA-type glutamate receptors (AMPARs) induced with learning using transgenic mice expressing the GluR1 subunit fused to green fluorescent protein (GFP-GluR1) under control of the c-fos promoter. We found learning-associated recruitment of newly synthesized GFP-GluR1 selectively to mushroom-type spines in adult hippocampal CA1 neurons 24 hours after fear conditioning. Our results are consistent with a "synaptic tagging" model to allow activated synapses to subsequently capture newly synthesized receptor and also demonstrate a critical functional distinction in the mushroom spines with learning.  相似文献   

2.
Two distinct forms of consolidated associative memory are known in Drosophila: long-term memory and so-called anesthesia-resistant memory. Long-term memory is more stable, but unlike anesthesia-resistant memory, its formation requires protein synthesis. We show that flies induced to form long-term memory become more susceptible to extreme stress (such as desiccation). In contrast, induction of anesthesia-resistant memory had no detectable effect on desiccation resistance. This finding may help to explain why evolution has maintained anesthesia-resistant memory as another form of consolidated memory, distinct from long-term memory.  相似文献   

3.
4.
Memory impairment after subcutaneous injection of acetoxycycloheximide   总被引:5,自引:0,他引:5  
Subcutaneous injection of 240 micrograms of acetoxycycloheximide in mice rapidly produces marked inhibition of cerebral protein synthesis. Treated mice were trained to escape shock by choosing the lighted limb of a T-maze. When trained five or more minutes after injection, they had a normal capacity to learn. They remembered normally 3 hours after training, but 6 hours after training they had markedly impaired retention. Amnesia persisted thereafter. Injections immediately after training had a less marked but significant amnesic effect. These studies suggest that protein synthesis is not necessary for learning or for memory for 3 hours after training but that it is required for long-term memory. The protein synthesis which appears to be necessary for long-term e3memory occurs during training, or within minutes after training, or both.  相似文献   

5.
Drug use and relapse involve learned associations between drug-associated environmental cues and drug effects. Extinction procedures in the clinic can suppress conditioned responses to drug cues, but the extinguished responses typically reemerge after exposure to the drug itself (reinstatement), the drug-associated environment (renewal), or the passage of time (spontaneous recovery). We describe a memory retrieval-extinction procedure that decreases conditioned drug effects and drug seeking in rat models of relapse, and drug craving in abstinent heroin addicts. In rats, daily retrieval of drug-associated memories 10 minutes or 1 hour but not 6 hours before extinction sessions attenuated drug-induced reinstatement, spontaneous recovery, and renewal of conditioned drug effects and drug seeking. In heroin addicts, retrieval of drug-associated memories 10 minutes before extinction sessions attenuated cue-induced heroin craving 1, 30, and 180 days later. The memory retrieval-extinction procedure is a promising nonpharmacological method for decreasing drug craving and relapse during abstinence.  相似文献   

6.
Molecular biology of learning: modulation of transmitter release   总被引:82,自引:0,他引:82  
Until recently, it has been impossible to approach learning with the techniques of cell biology. During the past several years, elementary forms of learning have been analyzed in higher invertebrates. Their nervous systems allow the experimental study of behavioral, neurophysiological, morphological, biochemical, and genetic components of the functional (plastic) changes underlying learning. In this review, we focus primarily on short-term sensitization of the gill and siphon reflex in the marine mollusk, Aplysia californica. Analyses of this form of learning provide direct evidence that protein phosphorylation dependent on cyclic adenosine monophosphate can modulate synaptic action. These studies also suggest how the molecular mechanisms for this short-term form of synaptic plasticity can be extended to explain both long-term memory and classical conditioning.  相似文献   

7.
Two types of consolidated memory have been described in Drosophila, anesthesia-resistant memory (ARM), a shorter-lived form, and stabilized long-term memory (LTM). Until now, it has been thought that ARM and LTM coexist. On the contrary, we show that LTM formation leads to the extinction of ARM. Flies devoid of mushroom body vertical lobes cannot form LTM, but spaced conditioning can still erase their ARM, resulting in a remarkable situation: The more these flies are trained, the less they remember. We propose that ARM acts as a gating mechanism that ensures that LTM is formed only after repetitive and spaced training.  相似文献   

8.
Years of intensive investigation have yielded a sophisticated understanding of long-term potentiation (LTP) induced in hippocampal area CA1 by high-frequency stimulation (HFS). These efforts have been motivated by the belief that similar synaptic modifications occur during memory formation, but it has never been shown that learning actually induces LTP in CA1. We found that one-trial inhibitory avoidance learning in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS and caused a spatially restricted increase in the amplitude of evoked synaptic transmission in CA1 in vivo. Because the learning-induced synaptic potentiation occluded HFS-induced LTP, we conclude that inhibitory avoidance training induces LTP in CA1.  相似文献   

9.
The role of electrical synapses in synchronizing neuronal assemblies in the adult mammalian brain is well documented. However, their role in learning and memory processes remains unclear. By combining Pavlovian fear conditioning, activity-dependent immediate early gene expression, and in vivo electrophysiology, we discovered that blocking neuronal gap junctions within the dorsal hippocampus impaired context-dependent fear learning, memory, and extinction. Theta rhythms in freely moving rats were also disrupted. Our results show that gap junction-mediated neuronal transmission is a prominent feature underlying emotional memories.  相似文献   

10.
探讨中老年CD-1小鼠海马Staufen(Stau)蛋白含量的改变及其与空间学习记忆功能减退之间的相关性。选取3月龄(青年)和15月龄(中老年)CD-1小鼠各10只(雌雄各半)。采用Morris水迷宫评估空间学习记忆能力,用免疫组织化学技术检测海马Stau蛋白的相对含量。结果发现,与3月龄小鼠相比,15月龄鼠在Morris水迷宫中学习期游泳路程显著延长(P<0.01),记忆期靶象限游泳路程百分比显著降低(P<0.05),且海马CA1区和CA3区Stau蛋白含量显著升高(P<0.05)。相关性分析显示,15月龄小鼠CA1区、CA3区Stau蛋白含量与学习期游泳路程呈正相关(P<0.05),CA3区Stau蛋白含量与记忆期靶象限路程百分比呈负相关(P<0.05)。以上结果提示中老年CD-1小鼠海马Stau蛋白含量呈亚区特异性增加,且可能与海马相关性空间学习记忆的损害有关。  相似文献   

11.
beta-Arrestin: a protein that regulates beta-adrenergic receptor function   总被引:26,自引:0,他引:26  
Homologous or agonist-specific desensitization of beta-adrenergic receptors is thought to be mediated by a specific kinase, the beta-adrenergic receptor kinase (beta ARK). However, recent data suggest that a cofactor is required for this kinase to inhibit receptor function. The complementary DNA for such a cofactor was cloned and found to encode a 418-amino acid protein homologous to the retinal protein arrestin. The protein, termed beta-arrestin, was expressed and partially purified. It inhibited the signaling function of beta ARK-phosphorylated beta-adrenergic receptors by more than 75 percent, but not that of rhodopsin. It is proposed that beta-arrestin in concert with beta ARK effects homologous desensitization of beta-adrenergic receptors.  相似文献   

12.
The activation of metabotropic glutamate receptors (mGluRs) leads to long-term depression (mGluR-LTD) at many synapses of the brain. The induction of mGluR-LTD is well characterized, whereas the mechanisms underlying its expression remain largely elusive. mGluR-LTD in the ventral tegmental area (VTA) efficiently reverses cocaine-induced strengthening of excitatory inputs onto dopamine neurons. We show that mGluR-LTD is expressed by an exchange of GluR2-lacking AMPA receptors for GluR2-containing receptors with a lower single-channel conductance. The synaptic insertion of GluR2 depends on de novo protein synthesis via rapid messenger RNA translation of GluR2. Regulated synthesis of GluR2 in the VTA is therefore required to reverse cocaine-induced synaptic plasticity.  相似文献   

13.
Mammals can be trained to make a conditioned movement at a precise time, which is correlated to the interval between the conditioned stimulus and unconditioned stimulus during the learning. This learning-dependent timing has been shown to depend on an intact cerebellar cortex, but which cellular process is responsible for this form of learning remains to be demonstrated. Here, we show that protein kinase C-dependent long-term depression in Purkinje cells is necessary for learning-dependent timing of Pavlovian-conditioned eyeblink responses.  相似文献   

14.
Antidepressant drugs and psychotherapy combined are more effective in treating mood disorders than either treatment alone, but the neurobiological basis of this interaction is unknown. To investigate how antidepressants influence the response of mood-related systems to behavioral experience, we used a fear-conditioning and extinction paradigm in mice. Combining extinction training with chronic fluoxetine, but neither treatment alone, induced an enduring loss of conditioned fear memory in adult animals. Fluoxetine treatment increased synaptic plasticity, converted the fear memory circuitry to a more immature state, and acted through local brain-derived neurotrophic factor. Fluoxetine-induced plasticity may allow fear erasure by extinction-guided remodeling of the memory circuitry. Thus, the pharmacological effects of antidepressants need to be combined with psychological rehabilitation to reorganize networks rendered more plastic by the drug treatment.  相似文献   

15.
Long-term potentiation (LTP) at glutamatergic synapses is considered to underlie learning and memory and is associated with the enlargement of dendritic spines. Because the consolidation of memory and LTP require protein synthesis, it is important to clarify how protein synthesis affects spine enlargement. In rat brain slices, the repetitive pairing of postsynaptic spikes and two-photon uncaging of glutamate at single spines (a spike-timing protocol) produced both immediate and gradual phases of spine enlargement in CA1 pyramidal neurons. The gradual enlargement was strongly dependent on protein synthesis and brain-derived neurotrophic factor (BDNF) action, often associated with spine twitching, and was induced specifically at the spines that were immediately enlarged by the synaptic stimulation. Thus, this spike-timing protocol is an efficient trigger for BDNF secretion and induces protein synthesis-dependent long-term enlargement at the level of single spines.  相似文献   

16.
Partial blockade of beta-adrenergic end-organ response to the autonomic nervous system was effected in a group of older men by administration of propranolol. The result was improved performance in a learning task. The data support the hypothesis that the learning decrement found among older men is not simply a manifestation of structural change in the central nervous system but is, at least in part, associated with the heightened arousal of the autonomic nervous system that accompanies the learning task.  相似文献   

17.
Lee SH  Choi JH  Lee N  Lee HR  Kim JI  Yu NK  Choi SL  Lee SH  Kim H  Kaang BK 《Science (New York, N.Y.)》2008,319(5867):1253-1256
Reactivated memory undergoes a rebuilding process that depends on de novo protein synthesis. This suggests that retrieval is dynamic and serves to incorporate new information into preexisting memories. However, little is known about whether or not protein degradation is involved in the reorganization of retrieved memory. We found that postsynaptic proteins were degraded in the hippocampus by polyubiquitination after retrieval of contextual fear memory. Moreover, the infusion of proteasome inhibitor into the CA1 region immediately after retrieval prevented anisomycin-induced memory impairment, as well as the extinction of fear memory. This suggests that ubiquitin- and proteasome-dependent protein degradation underlies destabilization processes after fear memory retrieval. It also provides strong evidence for the existence of reorganization processes whereby preexisting memory is disrupted by protein degradation, and updated memory is reconsolidated by protein synthesis.  相似文献   

18.
Long-term memory is thought to be mediated by protein synthesis-dependent, late-phase long-term potentiation (L-LTP). Two secretory proteins, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), have been implicated in this process, but their relationship is unclear. Here we report that tPA, by activating the extracellular protease plasmin, converts the precursor proBDNF to the mature BDNF (mBDNF), and that such conversion is critical for L-LTP expression in mouse hippocampus. Moreover, application of mBDNF is sufficient to rescue L-LTP when protein synthesis is inhibited, which suggests that mBDNF is a key protein synthesis product for L-LTP expression.  相似文献   

19.
The medial temporal lobe is crucial for the ability to learn and retain new declarative memories. This form of memory includes the ability to quickly establish novel associations between unrelated items. To better understand the patterns of neural activity during associative memory formation, we recorded the activity of hippocampal neurons of macaque monkeys as they learned new associations. Hippocampal neurons signaled learning by changing their stimulus-selective response properties. This change in the pattern of selective neural activity occurred before, at the same time as, or after learning, which suggests that these neurons are involved in the initial formation of new associative memories.  相似文献   

20.
Little is known about the neuronal mechanisms that subserve long-term memory persistence in the brain. The components of the remodeled synaptic machinery, and how they sustain the new synaptic or cellwide configuration over time, are yet to be elucidated. In the rat cortex, long-term associative memories vanished rapidly after local application of an inhibitor of the protein kinase C isoform, protein kinase M zeta (PKMzeta). The effect was observed for at least several weeks after encoding and may be irreversible. In the neocortex, which is assumed to be the repository of multiple types of long-term memory, persistence of memory is thus dependent on ongoing activity of a protein kinase long after that memory is considered to have consolidated into a long-term stable form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号