首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bright yellow color of pasta is an important qualitative trait for the durum wheat industry. Final color is the result of the balance between yellow and brown components in semolina. Polyphenoloxidase (PPO) is implicated as playing a significant role in darkening. This study aimed to characterize PPO activity of durum wheats. PPO was extracted and partially purified by ion-exchange chromatography on a column packed with diethyaminoethyl cellulose (DEAE). This procedure led to 26.33-fold purification with 24.7% recovery. The optimum temperature and pH of PPO were found to be 40 °C and 6.5, respectively. Heat stability of durum wheat PPO decreased as the temperatures increased from 30 to 80 °C. The z-value was calculated as 23.4 °C. It increased to 26.3 and 48.4 °C in the presence of 40% sucrose and 1 M NaCl, respectively. Durum wheat PPO was shown to use several phenolic compounds as substrate. Among the substrates used, the greatest substrate specificity was observed with catechol. Durum wheat PPO was sensitive to inhibitors such as ascorbic acid, cysteine, oxalic acid and citric acid. Ascorbic acid was the most effective inhibitor.  相似文献   

2.
Antioxidant activity (AA) of durum wheat (Triticum durum Desf.) grains was studied using the innovative LOX/RNO method, able to simultaneously detect different antioxidant mechanisms, and the TEAC assay, one of the most widely used assays. Insoluble-bound and free-soluble phenols, hydrophilic and lipophilic compounds were extracted from eight different whole flour samples; extracts were analyzed for AA and their content in several antioxidants. The LOX/RNO method measured very high AA values, with the highest ones [850–1500 μmol Trolox eq./g whole flour (dry weight)] for insoluble-bound phenolic extracts, highly correlated to total phenolic (r = 0.761, P < 0.001) and ferulic acid (r = 0.816, P < 0.001) contents. Hydrophilic and lipophilic extracts showed lower AA [70-140 and 40–60 μmol Trolox eq./g (dry weight), respectively], highly correlated to flavonoid (r = 0.583, P < 0.01) and protein (r = 0.602, P < 0.01), as well as β-tocotrienol (r = 0.684, P < 0.05) contents, respectively. Interestingly, the LOX/RNO method suggests that insoluble-bound phenolic compounds may exert very strong synergistic interactions within the extract. Contrarily, the TEAC assay did not correlate to any antioxidant content, resulted unable to highlight differences among samples, measured much lower AA values and did not suggest synergism. The use of the LOX/RNO method is useful to unearth new properties of phytochemicals from durum wheat grains, potentially giving health benefits.  相似文献   

3.
The quality of nine spaghetti typologies, produced by using wheat durum semolina as a base plus the addition of buckwheat and durum wheat bran, was investigated. The quality of the produced spaghetti was compared with that of spaghetti made only of durum semolina (CTRL). Tests were run on the samples to determine breakage susceptibility and colour of dry spaghetti, the cooking resistance, instrumental stickiness at optimal cooking time (OCT) and overcooking, the cooking loss and sensorial attributes at the optimal cooking time. Results suggest that the breakage susceptibility decreases with the addition of 15% and 20% bran, the spaghetti dry colour changes with the addition of buckwheat flour and bran compared to the spaghetti made only of durum semolina, while the cooking resistance, instrumental stickiness and the cooking loss, in general, were equal to that of the CTRL. However, the addition of buckwheat flour and bran affected the sensorial attributes differently.  相似文献   

4.
The degradation effects of wheat bug protease(s) on glutenin proteins of durum wheat cultivars were investigated by electrophoresis and modified rapid visco analyser (RVA) test. Glutenin patterns of the bug damaged durum wheats changed substantially due to bug protease(s). Although high molecular weight glutenin subunits (HMW-GS) of three cultivars (Ege, Svevo, and Zenith) disappeared after 60 min of incubation, the HMW-GS of other two cultivars (Diyarbakir and Firat) were still visible even after the longest incubation period at medium damage level. It shows that there was an intercultivar variation in susceptibility to hydrolysis by bug proteolytic enzymes. Low molecular weight glutenin subunits of all cultivars decreased substantially after 30 min of incubation. The RVA curves indicated a clear reduction in viscosity in semolina samples with both medium and high damage levels as compared to their respective undamaged (control) samples. There were significant correlations (p < 0.001) between bug damage level and viscosities at 3 min (r = −0.765), at 4.5 min (r = −0.549) and at 10 min (r = −0.835), breakdown value (r = −0.534) and decay rate (r = 0.600). Consequently, hydrolysis rate of wheat bug protease(s) can be determined by modified RVA technique without much more chemicals, procedures and expensive equipments.  相似文献   

5.
Under terminal drought conditions, cereal varieties with limited tillering have been suggested to be advantageous, because they have fewer nonproductive tillers, thereby limiting water consumption prior to anthesis. In this study, four field trials were conducted over two growing seasons in southern Spain, under rainfed and irrigated conditions. Twenty-five genotypes were studied to evaluate the contribution of the main stem (MS) and tillers to grain yield and its components. Significant differences were found among genotypes for these contributions under non-stressed environments, but these differences were not significant under water-stress conditions. The contribution of the MS to plant grain yield was higher than that of tillers (68% vs. 32%) and was stable between years in irrigated trials. However, in the rainfed trials, MS contributed differently depending on year-to-year climate variations. Thus, under favorable weather conditions the contribution of MS to grain yield was higher than in the unfavorable year (85% vs. 59%). In irrigated environments, MS and tiller grain yield depended on the number of grains per spike, spikelets per spike, and thousand kernel weight (TKW). Under water-limited conditions, MS yield depended on the number of grains per spike and grains per spikelet, whereas the number of spikelets and TKW had less influence on MS grain yield. Furthermore, under water-stress conditions, high tillering genotypes showed yield levels similar to the genotypes with restricted tillering. Additionally, there was no significant evidence of a positive or negative effect of maximum tiller number on grain yield under rainfed conditions.  相似文献   

6.
Gluten strength is an important characteristic, determining the end product quality of durum wheat semolina. To identify the genetic basis of gluten strength in North Dakota durum cultivars, a doubled haploid population was developed from the cross of a weak gluten cultivar ‘Rugby’ and a strong gluten cultivar ‘Maier’. A framework linkage map consisting of 228 markers was constructed and used with phenotypic data on gluten strength (measured by sedimentation volume) to conduct single- and two-locus QTL analyses. Only one consistent QTL (QGs.ndsu-1B) contributing up to 90% of the phenotypic or 93% of the genotypic variation was detected on 1BS. No QTL × QTL or QTL × environment interactions were observed. The QGs.ndsu-1B was flanked by two DArT markers which were converted to STS markers and used along with SSR and EST-SSRs to develop a map of 1BS. QTL analysis delineated QGs.ndsu-1B in a 7.3 cM region flanked by an STS marker (STS-wPt2395) and a SSR marker (wmc85). The adapted background of this material and availability of PCR-based markers closely associated with this locus represent invaluable resources for marker-assisted introgression of gluten strength into other durum wheat varieties. A single QTL segregating in this population also makes it an ideal target for map-based cloning.  相似文献   

7.
The aim of this study was to assess the relative roles of genotype, environment and genotype-by-environment interactions in determining the metabolite profile of durum wheat grain. Four durum wheat cultivars were grown under conventional and organic farming systems over three consecutive years. The use of a high-throughput gas chromatography–mass spectrometry platform allowed the analysis of sets of different polar and non-polar compounds, including amino acids, sugars, organic acids, fatty acids (saturated and unsaturated), and sterols. Statistical analysis of the data showed a small impact of genotype and large effects of both year and genotype-by-environment interaction on the metabolite composition and quality of the wheat grain. Overall, the data from this study highlight the potential role of metabolic profiling in the analysis of durum wheat quality and production.  相似文献   

8.
The effects of grain texture on pastamaking and breadmaking quality were studied in three F8 soft-textured durum wheat lines (SDLs) containing wild-type alleles Pina-D1a and Pinb-D1a as compared with their hard durum sister lines (HDLs). SDLs homozygous for a small 5DS segment, less than 14.4 cM in size, accumulated puroindolines A (Pin-A) and B (Pin-B) and showed SKCS values (19.9-23.6) significantly lower than those (72.6-76.8) of their hard-textured counterparts lacking Pin-A and Pin-B. In addition, SDLs exhibited approximately 24% higher flour extraction rates compared with HDLs. Reducing the kernel hardness decreased farinograph water absorption, dough tenacity (P) and, accordingly, alveograph P/L ratio, but increased farinograph stability, mixing tolerance and dough extensibility (L). Spaghetti cooking quality, as determined by the sensory judgment of firmness, stickiness and bulkiness, was unaffected by the kernel hardness, whereas the loaf volume exhibited a 10% increase associated with kernel softening. Flour and semolina, but not spaghetti, from SDLs showed a substantial reduction in yellowness (b*) and brownness (100 − L*) likely due to their finer particle size compared with HDLs. Alleles Pina-D1a and Pinb-D1a may offer new perspectives for breeding dual purpose (pasta and bread) durum wheat varieties.  相似文献   

9.
10.
This study aimed to draw the attention of the all stake holders attention to an underestimated insect pest of wheat in Southeastern Anatolia. The field studies were carried out in the experimental field of GAP Training, Extension and Research Center in Koruklu in 2003–2004 cropping season.

It was found that the number of sawfly damaged spikes varied between 6 and 12% in durum wheat and 8 and 12% in bread wheat. Comparing healthy grains, grain weight spike−1 decreased significantly, giving 0.430 g less kernel weight in durum wheat and 0.385 g in bread wheat. Some of the grain quality characteristics of both sawfly damaged and healthy spikes were tested and it was found that protein content (%) in durum wheat, and 1000 kernel weight in bread wheat were reduced significantly, whilst, the SDS sedimentation value in bread wheat increased significantly for sawfly damaged grains. Grain yield losses by sawfly infestation were found to be 2.23% in durum wheat and 3.32% in bread wheat. Marketing price studies showed that sawfly damage reduced it significantly, resulting in $ 0.016 kg−1 less price in bread wheat. But this was not serious for durum wheat.

It was concluded that income loss, depending on grain yield loss, un-harvestable broken spikes and lower marketing price of sawfly damaged grains, could be no less than $ 68.8 ha−1 in durum wheat and $ 68.6 ha−1 for bread wheat. Therefore, some control methods are required for sawfly infestation, where damage is already over the economic threshold (10–15% stem cut by pest) especially in bread wheat.  相似文献   


11.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs.  相似文献   

12.
Influence of protein content on spaghetti cooking quality   总被引:1,自引:1,他引:1  
Water sorption tests on three different types of laboratory-made spaghettis were conducted at 100 °C to study the influence of protein content on hydration kinetics during cooking and overcooking and on quality characteristics. In particular, the weight, diameter and length of spaghetti strands were monitored over a 20 min period. The different hydration behaviours of the spaghettis were analyzed using a mathematical model that quantitatively resolved the hydration process into the controlling factors (i.e. water diffusion, macromolecular matrix relaxation kinetics, and ‘residual deformation’ release kinetics). Only small differences were observed within the range of protein contents (12.7–15.5%) investigated. In particular, spaghetti stickiness decreased as protein content increased. Moreover, samples with intermediate protein contents showed the highest water diffusion coefficients.  相似文献   

13.
Durum wheat is an important crop widely distributed which grain is used in the elaboration of diverse food products. Most notably, durum wheat is used for the production of high quality pasta all around the world, but also for bread, couscous or bulgur, among other products. The end-use quality of these products is heavily determined by the grain quality characteristics, which depend on the wheat variety cultivated, the environmental effects and GxE interactions. The present study was conducted using a collection of 46 commercial durum wheat varieties to describe the phenotypic variation of the main target traits determining wheat quality, ascertain the effects of drought stress (very common in durum areas) on grain quality traits, and to assess the relationship between allelic variations of glutenins composition and gluten properties. Overall the varieties from Australia, USA and Italy showed the best performance in terms of grain quality. Additionally, the effects of drought stress on grain quality traits were analyzed: some traits were favored due to a higher protein concentration but others, such as flour yellowness were not affected by drought stress. The analysis of the varieties' glutenins composition showed the positive or negative effect of some alleles on different quality traits.  相似文献   

14.
The effect of technological processing on the contents of eight minerals – i.e., calcium, copper, iron, magnesium, phosphorous, potassium, selenium, and zinc – was investigated in pasta making. Milling of durum wheat as well as pasta making were carried out in a pilot plant by using three different grain samples. Pasta samples purchased on the market were also surveyed to gain information on the mineral content of commercial products. The effect of cooking was also investigated in order to determine the retention of the selected elements in the final ‘ready-to-eat’ product. Analyte concentrations in whole grains, semolina, pasta and cooked pasta were determined by inductively coupled plasma-mass spectrometry.  相似文献   

15.
Samples of Canadian amber durum wheat varieties, of various protein content and a composite of export cargo samples, were milled to yield straight-grade and patent flours by reducing semolina and processed into yellow alkaline noodles (YAN). Samples of Canada Hard White Spring (CWHWS) and Canada Western Red Spring (CWRS) were included for comparative purposes. YAN from durum wheat displayed a colour advantage over CWRS and CWHWS YAN. The durum YAN displayed an approximate 9–20 unit greater b* (yellowness) value than CWRS and CWHWS at 2 and 24 h after preparation. This relates to greater yellow pigment and flavonoid contents in the durum flours. All durum wheat YAN exhibited excellent noodle brightness, which was retained over time due to lower levels of the enzymes polyphenol oxidase (PPO) and peroxidase (POD). Durum noodles displayed significantly fewer specks than CWRS and were comparable to CWHWS. Durum wheat YAN cooking quality was equal to or slightly superior to CWRS and CWHWS. Durum wheat flour refinement imparted no significant effects on cooked noodle texture (maximum cutting stress, recovery, resistance to compression). However, the various texture parameters improved with durum wheat protein content and gluten strength.  相似文献   

16.
To assess the effect of ageing on alpha-amylase activity, falling number, pasting properties and SDS sedimentation volume, whole meal and white flours of einkorn (cv Monlis) and bread wheat (cv Serio) were stored in darkness at different temperatures and analysed several times up to 374 days. Pregerminated bread wheat flours (cv Blasco) were also evaluated.  相似文献   

17.
The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and water stress (P<0.0001), with more disease under drier conditions. Additionally, the tiller number per mature plant, the 1000 grain weight and disease severity in mature stage were reduced by inoculation in greenhouse studies. In a field test, inoculation with F. culmorum significantly reduced the yield (P<0.001), by more than 17% for Om Rabiaa and 38% for Karim, the two cultivars tested. Yield was also significantly affected by precipitation and irrigation levels. The severity of the disease, estimated by the percentage of white heads, was separately affected by the cultivar (P<0.001) and inoculation (P = 0.0004). Percentage of white heads was 1.5 and 2 × higher in inoculated plants than non-inoculated for Om Rabiaa and Karim cultivars, respectively. Disease severity was highest in treatments with the greatest water stress. This is the first detailed study of water stress and F. culmorum on durum wheat in Tunisia, and indicates that cultivar resistance and irrigation management may be important in the management of Fusarium foot rot.  相似文献   

18.
The dehydrodiferulic acid content of different common and durum wheat grains and milling fractions was determined by an HPLC procedure. The 8-O-4′, 5–8′ benzofuran, 5–8′ and 5-5′ dehydrodimers were identified in all samples studied and occurred in decreasing relative amounts, respectively. Durum wheats were twice as concentrated in dimers as common wheats. An important genetic variation for dehydrodiferulic acid content was shown within durum wheat grains, whereas the agronomic conditions had no effect. There was 10 to 20 times more dehydrodiferulic acids in external layers (aleurone, bran) than in the starchy endosperm of durum wheat grains. The content and composition in dimers of the inner endosperm did not vary according to genotypes and cultivation conditions. The ratio of dehydrodimers to monomers of ferulic acid which represented an index of dimerisation, was 1·6 times higher in the external layers of the grain than in the endosperm. No relation was found, however, between the degree of ferulic acid dimerisation and the milling behaviour of durum wheat grains.  相似文献   

19.
The effects of particle size of granulars (semolina and flour combined), gluten strength, protein composition and fermentation time on the breadmaking performance were compared for eleven durum wheat genotypes of diverse strength from North America and Italy grown in the same environment. All genotypes were γ-gliadin 45 types (low-molecular weight glutenin subunit 2 patterns) associated with superior pasta-making quality. Three cultivars with high-molecular weight glutenin subunit 20 exhibited relatively weak gluten, confirming that this subunit is associated with weakness in durum wheat. Gluten strength as measured by a range of technological tests was directly and strongly related to the proportion of insoluble glutenin (IG) in granulars protein as determined by a spectrophotometric procedure. Reducing the particle size of granulars by gradual reduction shortened development time in both the farinograph and mixograph. Reducing granulars also increased starch damage and, accordingly, farinograph water absorption, but remix-to-peak baking absorption was unaffected due to increased fermentation loss for finer granulars. Neither loaf volume, nor remix-to-peak mixing time were affected by the particle size of the granulars indicating that regrinding is not an asset for baking provided there is adequate gassing power. Loaf volume was directly related to gluten strength and IG content, and inversely related to residue protein, a non-gluten containing fraction. When fermentation time was reduced from the standard 165 to 90 min and 15 min, all genotypes exhibited a progressive increase in loaf volume. Therefore, regardless of strength, short fermentation time is preferred when high volume durum wheat bread is desired. Some of the stronger durum genotypes exhibited remix-to-peak bread volume comparable to that expected of good quality bread wheat, indicating that there is potential to select for genotypes with improved baking quality in conventional breeding programs by screening for high content of insoluble glutenin.  相似文献   

20.
Grain hardness, a major determinant influencing end-use quality of common wheat, is mainly controlled by Puroindoline a-D1 (Pina-D1) and Puroindoline b-D1 (Pinb-D1) genes. Recently, additional puroindoline genes, designated Puroindoline b-2 (Pinb-2), were described. This study examined frequencies of Pin-D1 alleles and Pinb-2 variants in 94 West European wheat genotypes and assessed their association with 13 quality traits considering population and family structure. The survey was completed by analyzing the Grain softness protein-1 gene. Results indicated sequence variation only for Pinb-D1 and Pinb-B2 genes. Pinb-D1b was the predominant hard allele. Pinb-B2v3-1 was the most common Pinb-2 variant, followed by a newly discovered variant Pinb-B2v3-5. Association mapping carried out in the whole sample population showed that Pinb-D1 alleles were associated with 11 quality traits, whereas Pinb-B2 variants were only associated with semolina extraction. Considering only the panel of hard wheat genotypes, variation for flour ash content, sedimentation value, gluten index and loaf volume was found to be associated with Pinb-D1 mutations suggesting that different Pinb-D1 mutations might have particular effects on quality traits. Our study indicated that Pinb-D1d was associated with inferior sedimentation value, gluten index and loaf volume, for which reason this mutation should be disregarded in breeding for quality wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号