首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 593 毫秒
1.
苦驴河上游小流域土壤侵蚀及其养分流失特征   总被引:1,自引:1,他引:1  
[目的]定量分析苦驴河上游小流域土壤侵蚀及其养分流失特征,为巢湖上游小流域水土保持工作提供科学依据。[方法]基于遥感技术(RS)和地理信息系统(GIS),利用修正通用土壤流失方程(RUSLE)定量评估研究区土壤侵蚀及其养分流失状况,分析土壤侵蚀强度与坡度、高程和土地利用等因子的关系。[结果]①2018年研究区平均土壤侵蚀模数为394.45 t/(km~2·a),主要为微度和轻度侵蚀。②土壤侵蚀强度与坡度呈明显的正相关,且随着坡度增加,强度及以上侵蚀的面积比例逐渐增加。同一高程范围内不同土地利用对土壤侵蚀程度影响不同,以各土地利用的平均土壤侵蚀模数表示为:未利用地[1 022.55 t/(km~2·a)]林地[655.04 t/(km~2·a)]旱地[285.78 t/(km~2·a)]水田[139.80 t/(km~2·a)]。③土壤养分流失与土壤侵蚀的空间分布趋势一致,土壤有机碳(SOC)、总氮(TN)、总磷(TP)平均流失量分别为3.66,0.27,0.07 t/(km~2·a)。[结论]苦驴河上游小流域土壤侵蚀及其养分流失受地形地貌影响显著,南高北低,南部丘陵水土流失较为严重,山林地和坡耕地是该地区水土保持工作的重点区域。  相似文献   

2.
[目的]分析影响赣江上游流域土壤侵蚀的主要因素,为该区水土流失治理与科学管理提供科学依据。[方法]基于2015年Landsat 8遥感影像、MODIS NDVI数据、数字高程模型(DEM)、土壤类型和降雨数据,采用RUSLE模型和随机森林算法对赣江上游流域土壤侵蚀及其影响因子进行定量化分析。[结果] 2015年赣江上游流域土壤侵蚀强度由东南向西北逐渐加剧,总体上处于轻度侵蚀水平,土壤侵蚀总量为3.45×10~7 t/a,平均土壤侵蚀模数为1 046.38 t/(km~2·a),比南方红壤丘陵区土壤允许流失量[500 t/(km~2·a)]高出2倍之多;子流域9,11,15平均土壤侵蚀模数分别为1 672.66,1 715.83和1 565.36 t/(km~2·a),处于中度侵蚀级别,为研究区重点防治区域;其余子流域均为轻度侵蚀级别。[结论]各子流域的土壤侵蚀受植被覆盖与管理因子(C)和坡长坡度因子(LS)影响较大,两者重要程度分别在30%和20%以上,土壤可蚀性因子(K)和降雨侵蚀力因子(R)的重要程度偏低,均未超过10%。其中子流域9,11,21主要受LS因子影响,其余子流域均受C因子主控。  相似文献   

3.
土壤侵蚀一直是我国开展区域生态环境治理所关注的热点问题之一。在RS和GIS技术支持下,基于RUSLE模型分析了凉山州孙水河流域不同土地利用类型、海拔和坡度条件下土壤侵蚀强度的特征,定量评价了研究区土壤侵蚀空间特征。结果表明:孙水河流域平均土壤侵蚀模数为1 954.32 t/(km~2·a),土壤侵蚀严重区域主要集中于孙水河干流及其支流沿岸;坡耕地和中覆盖草地是流域内主要侵蚀土地利用类型;海拔2 000~3 000 m流域土壤侵蚀较为严重,平均土壤侵蚀模数超过2 000 t/(km~2·a);当坡度低于25°时,土壤侵蚀模数随着坡度的增加而增大,15°~25°是该流域侵蚀最为严重的地带。研究成果可服务于凉山州孙水河流域水土保持治理工作,为实现乡村振兴提供一定理论支持。  相似文献   

4.
基于RUSLE的陕南地区土壤侵蚀时空变化特征   总被引:1,自引:0,他引:1  
基于GIS和RS技术,采用遥感影像、DEM数据、土壤类型数据、降雨数据以及植被覆盖和土地利用等数据,运用RUSLE模型,计算并分析了陕南地区1995—2014年近20年土壤侵蚀强度的时空动态变化特征。结果表明:(1)5个时期土壤侵蚀模数分别为787.86t/(km~2·a),1 362.97t/(km~2·a),1 627.75t/(km~2·a),1 684.41t/(km~2·a),1 571.79t/(km~2·a),呈先快速增加后缓慢减小的趋势。土壤侵蚀类型整体上以微度和轻度侵蚀为主,随时间变化微度侵蚀呈降低趋势,其他5个等级侵蚀均呈波动增加趋势;(2)土壤侵蚀较严重的区域主要分布在中部和大巴山的北部,以紫阳县和镇巴县为主,两县平均土壤侵蚀强度分别为2 935.47t/(km~2·a),3 327.45t/(km~2·a),属于中度侵蚀;(3)不同海拔梯度上,土壤侵蚀随海拔升高整体呈先增加后降低的趋势,中山区(800~2 000m)分布面积最广,侵蚀强度大,其次是低山区(500~800m),丘陵和高山区分布面积均较少,侵蚀强度小;(4)不同坡度梯度上,表现出坡度越大,土壤侵蚀越严重的特征,且坡度25°的区域是研究区主要的土壤侵蚀坡度段,是陕南地区土壤侵蚀防治的主要区域。  相似文献   

5.
研究黄河上游土壤侵蚀的时空变化对于维持黄河上游生态系统服务功能、保护黄河上游水塔具有重要意义。以黄河上游典型区域湟水流域为研究区,采用RUSLE模型定量评估了该流域2000—2015年土壤侵蚀的时空变化特征,并分析了有无梯田措施下土壤侵蚀的空间变化,从而量化了梯田建设对防治坡面土壤侵蚀的影响。结果表明:2000—2015年,湟水流域的土壤侵蚀强度整体呈现减小趋势,侵蚀模数由1 183 t/(km~2·a)降低至940 t/(km~2·a),减少幅度为20.54%。不同土地利用类型以及不同坡度下的土壤侵蚀强度均有所降低,其中耕地上的减幅最大为20.58%。15°~20°坡度区间的侵蚀模数减幅最显著,为23.11%。通过有无梯田措施情景模拟发现,湟水流域2015年土壤侵蚀模数由940 t/(km~2·a)降低至有梯田的837 t/(km~2·a),减少11.00%。研究结果可为流域的水土流失防治和生态环境保护提供科学依据。  相似文献   

6.
基于DEM、降雨、土壤调查等基础数据,在GIS和RS技术的支持下,运用USLE模型估算敖汉旗的土壤侵蚀量,探讨了不同土地利用、坡度和坡向下的土壤侵蚀强度空间分布差异性。结果表明:敖汉旗土壤侵蚀面积占研究区总面积的31.86%,年土壤侵蚀量达183万t,土壤侵蚀模数为697 t/(km~2·a),属轻度侵蚀区。耕地土壤侵蚀模数最大,为820 t/(km~2·a),占侵蚀总面积83.00%的耕地对侵蚀总量的贡献率高达97.61%,是水土流失防治的重点;土壤侵蚀模数和侵蚀量随坡度的增大均呈现先增大后减小的趋势,二者最大值均出现在8°~15°;占研究区侵蚀总面积38.62%的坡度范围(5°~25°)对土壤侵蚀总量贡献率高达65.39%,是土壤侵蚀发生的主要坡度区域;阳坡土壤侵蚀较阴坡严重,二者对侵蚀量的贡献率分别为47.36%和45.59%,与土地利用、坡度相比,坡向对土壤侵蚀空间差异性的影响不显著。  相似文献   

7.
基于RUSLE模型的梅河口市土壤侵蚀动态分析   总被引:2,自引:1,他引:1  
[目的]定量分析区域土壤侵蚀强度动态变化及其影响因素,为区域水土保持工作提供科学依据。[方法]基于3S技术,采用RUSLE模型计算吉林省梅河口市2010年和2017年的土壤侵蚀模数,并从土地利用类型、坡度和水土保持措施3个方面分析土壤侵蚀变化特征。[结果](1)梅河口市2010年、2017年的平均土壤侵蚀模数分别为698.75,678.25t/(km~2·a),土壤侵蚀状况有所改善。(2)梅河口市的土壤侵蚀与坡度和土地利用有关,95%的土壤侵蚀分布在坡度15°坡地,土地利用以耕地和林地为主的区域。(3)2010—2017年,水保项目实施区域的平均土壤侵蚀模数下降了154.08t/(km~2·a),土壤侵蚀量减少了2.65×10~4 t。[结论]水保项目的实施在改善水土保持功能上取得较大的成效,但治理后的区域仍存在一定强度的侵蚀,且土地利用的不利转变加重了区域土壤侵蚀。因此,区域水土流失治理工作需考虑多部门协同,从源头上遏制发生水土流失的不利因素。  相似文献   

8.
基于RUSLE的北洛河上游流域侵蚀产沙模拟研究   总被引:2,自引:1,他引:1  
以RS、GIS和RUSLE模型结合SEDD模型,分析了退耕还林前后北洛河上游流域1990年、2000年和2010年土壤侵蚀强度和产沙量的时空变化特征。结果表明:3个时期年平均土壤侵蚀模数分别为18189.72,7 408.93,2 857.76t/(km~2·a),年均输沙模数分别为14 093.31,5 997.65,2 394.37t/(km~2·a),均呈减小趋势。3个时期的土壤侵蚀量在地形上的分布表现出趋同性,即高程上均在1 475~1 575m内平均侵蚀模数和侵蚀量表现出最大值。随着坡度增加,平均侵蚀模数增加,流域内75%以上的侵蚀量均来自于坡度15°区域。3个时期平均侵蚀模数均遵循阳坡半阳坡半阴坡阴坡的规律。研究为该区域生态环境建设效益评价及水土资源合理利用提供有益信息。  相似文献   

9.
[目的]分析南汀河流域坡面土壤侵蚀的时空分异特征,为流域水土保持和边疆生态环境建设提供科学参考。[方法]基于通用土壤流失方程(USLE),运用RS和GIS技术计算南汀河流域1990,2000及2010年3个时段的土壤侵蚀模数。[结果]3个时段内研究区侵蚀模数呈现先升后降的趋势,年均侵蚀模数从24.75t/(hm2·a)升到30.05t/(hm2·a),然后降为25.87t/(hm2·a)。3个时段内,流域内强烈侵蚀及其以上的侵蚀面积仅占总侵蚀面积的19.94%,但对流域总侵蚀量的贡献高达73.56%。1990—2000年,强烈及强烈以下侵蚀面积减少了1 059.85km2,强烈侵蚀以上的侵蚀面积则增加了112.29km2;2000—2010年,微度侵蚀面积有小幅增加,其余侵蚀等级的侵蚀面积都有所下降。当坡度小于20°时,侵蚀模数随着坡度的增加而增加,坡度超过20°后,侵蚀模数有降低的趋势;从海拔上看,高侵蚀模数区域主要位于海拔500~2 000m范围。[结论]流域内的土壤侵蚀治理已初见成效,但在局部地区,土壤侵蚀仍有加剧现象。  相似文献   

10.
[目的]研究区域土壤侵蚀,揭示水土流失的空间分异规律,为区域水土保持和生态农业建设提供理论指导依据。[方法]应用GIS和RUSLE模型对云南省泸水县的土壤侵蚀进行研究。RUSLE模型中的因子包括降雨侵蚀力、土壤可蚀性、坡度坡长因子、植被覆盖和水土保持措施因子,运用GIS空间分析模块,获取泸水县土壤侵蚀模数空间分布图,根据SL 190-2007的分级标准进行土壤侵蚀强度分级,并分析该区土壤侵蚀强度空间分布格局。[结果](1)从各强度侵蚀面积上看,泸水县2014年土壤侵蚀以微度侵蚀为主,占总面积的86.86%,但从平均土壤侵蚀模数看,土壤侵蚀量为4.24×10~6 t,平均侵蚀模数为1 373.1t/(km~2·a),土壤侵蚀强度属于轻度侵蚀;(2)土壤侵蚀较严重区与未利用地、耕地空间分布基本一致,在坡度25°~50°的范围内,侵蚀面积占总侵蚀面积的75%,并且在该坡度段上的耕地面积占总耕地的63%,剧烈侵蚀集中分布在未利用地上,中度以上剧烈以下强度侵蚀集中分布在该坡度段上的耕地上,说明该坡耕地、未利用地对土壤侵蚀的贡献最大,要加强对未利用地的生态治理。[结论]坡度大,陡坡垦殖和未利用地的不合理利用是该区土壤侵蚀加重的主要原因,坡度在25°以上的地区不适宜耕种,应优化农业产业结构如实施退耕还林还草等措施,才能有效的保持水土。  相似文献   

11.
基于USLE的广东省山区土壤侵蚀量估算及特征分析   总被引:2,自引:1,他引:1  
基于通用土壤流失方程(universal soil loss equation,USLE)、遥感和ArcGIS空间分析技术,通过合理选择USLE模型中各土壤侵蚀因子的计算方法,对广东省山区土壤侵蚀量进行了估算,并对山区土壤侵蚀随土地利用类型、土壤类型、坡度及海拔高度的分布特征进行了分析。结果表明,广东省山区2000年土壤侵蚀总量为1.23×108 t,年均侵蚀模数为1 080t/(km2·a),侵蚀强度为轻度。不同土地利用类型中,旱地的侵蚀强度最高,达2 055t/(km2·a),林地和草地的侵蚀模数较小,分别为908和932t/(km2·a)。不同坡度等级的土壤侵蚀特征表现为坡度越陡,侵蚀强度越大。不同海拔高度的侵蚀特征表现为在0~1 600m高度,侵蚀强度随海拔高度的升高而增大;海拔高于1 600m时,侵蚀强度随海拔高度的升高而下降。  相似文献   

12.
为了系统反映黑土区典型水蚀小流域土壤侵蚀特征,基于连续的Landsat TM/OLI影像计算NDVI,并基于优化后的土壤和土地利用参数,结合实地调查,利用中国土壤流失方程(CSLE)、基于单位流量加权侵蚀沉积模型(USPED)分别模拟了海伦市光荣小流域2000—2021年间平均土壤侵蚀模数和侵蚀沉积分布格局,并通过融雪侵蚀模型(SHI)模拟了2017年春季融雪侵蚀空间分布,综合分析了小流域的侵蚀格局成因。结果表明:2000—2021年间CSLE模拟发现,小流域平均土壤侵蚀模数为5.57 t/(hm2·a),平均土壤流失量为0.55 mm/a,坡上侵蚀量较少[0~2 t/(hm2·a)],为微度侵蚀,坡中处于极强烈侵蚀和剧烈侵蚀等级,侵蚀贡献主要来自坡度2°~6°区域,占总侵蚀量的79.56%;USPED模拟发现,小流域78.11%面积发生侵蚀或沉积,其中侵蚀面积占流域面积24.89%,平均侵蚀模数为9.40 t/(hm2·a),且多集中在坡中和坡底侵蚀沟位置;沉积面积占流域面积的53.22%,平均沉积模数为-4.39 t...  相似文献   

13.
该文通过紫色丘陵区响水滩小流域不同土地利用类型、不同坡度和坡长、不同地貌部位土壤剖面中 137Cs含量的测定与分析,对其侵蚀空间分布进行了估算。研究结果表明:该流域 137Cs含量的背景值为1870 Bq/m2;流域内坡耕地、林地的年平均侵蚀强度分别为4468、1759 t/(km2·a);土壤侵蚀量与坡长、坡度均指数相关;丘顶、丘坡和鞍部的年平均侵蚀强度分别为2125、4676、3625 t/(km2·a)。结果表明土地利用类型、坡长和坡度、地貌部位对土壤侵蚀量影响很大,坡耕地是该流域泥沙的主要来源。  相似文献   

14.
黄土高原不同侵蚀类型区侵蚀产沙强度变化及其治理目标   总被引:5,自引:3,他引:2  
为了确定黄土高原不同侵蚀类型区的治理目标,采取"水文—地貌法",利用98个水文站控制区和234个侵蚀产沙单元,在分析其不同治理阶段土壤侵蚀产沙变化特征与减沙幅度,不同侵蚀强度面积的变化及其空间分布的基础上,提出了未来20a黄土高原主要流失区的区域治理目标:土壤流失量控制在3.60×108 t左右,土壤侵蚀模数1 300 t/(km2.a)左右。其中,黄土峁状丘陵沟壑区为3 000t/(km2.a),黄土梁状丘陵沟壑区为2 000t/(km2.a),干旱黄土丘陵沟壑区为2 000t/(km2.a),黄土平岗丘陵沟壑区为1 000t/(km2.a),风沙黄土丘陵沟壑区为1 000t/(km2.a),黄土山麓丘陵沟壑区为1 000t/(km2.a),森林黄土丘陵沟壑区为300t/(km2.a),黄土高塬沟壑区为1 500t/(km2.a),黄土残塬沟壑区为3 000t/(km2.a),黄土阶地区为500t/(km2.a),风沙草原区为500t/(km2.a),高原土石山区为100t/(km2.a)。未来20a黄土高原的治理重点区域为黄土峁状丘陵沟壑区(2.20×104 km2)、干旱黄土丘陵沟壑区(1.50×104 km2)、黄土高塬沟壑区(8 600km2)、黄土梁状丘陵沟壑区(4 600km2)。  相似文献   

15.
为探究安徽省青弋江流域土壤侵蚀的演变规律和驱动因素,采用InVEST模型对该流域2000—2018年的土壤侵蚀特征开展了研究,量化了不同土地利用类型、海拔、坡度下土壤侵蚀状况,并借助地理探测器对流域土壤侵蚀影响因素进行分析。结果表明:(1)2000年、2010年、2018年该流域平均土壤侵蚀模数分别为15.29,14.14,10.74 t/(hm2·a),侵蚀总量分别为1.08×107,1.00×107,0.76×107 t,呈现逐渐减小特征;(2)流域内土壤侵蚀空间差异显著,呈现“北低南高”的分布格局;(3)不同土地利用类型土壤侵蚀模数大小表现为裸地>草地>林地>耕地>建设用地>水体,全流域林地侵蚀量最大,占总侵蚀量的73.71%;(4)地形因子对流域内土壤侵蚀存在显著影响,坡度是青弋江流域土壤侵蚀主导因子,因子间交互作用对土壤侵蚀的解释力均大于单因子,其中坡度与年降水量和土地利用的协同作用解释力最强,分别达22.93%和22.29%;(5)坡地坡度降缓及增加草地和林...  相似文献   

16.
黄土高原南部土地利用/覆被变化的土壤侵蚀效应   总被引:1,自引:1,他引:0  
基于3S技术对黄土高原南部地区土地利用/覆被变化及空间分布格局进行了综合测评,同时应用通用土壤流失方程(USLE)定量研究了不同土地利用方式下的土壤侵蚀效应.研究表明,研究区1980-2005年共有1 123.80 km2耕地被用为城镇建设用地,建设用地面积净增了1 238.29 km2,林地、草地面积总量变化小,但局部地区流转特征显著;与此同时,该区土壤侵蚀模数从11.54 t/(hm2·a)增至13.81t/(hm2·a),1980和2005年黄土沟壑区侵蚀模数的峰值分别为1 708.52和1 584.69 t/(hm2·a).该区域土壤侵蚀效应与土地利用空间格局耦合性较强,林地、草地由于分布区域海拔高,坡度陡,侵蚀强烈,而地势低洼、平坦地区(建设用地、耕地、未利用地)的土壤侵蚀强度小.林地、草地的土壤侵蚀效应由于受到地形因素的影响,对降雨侵蚀因子增强的响应尤其明显.2005年该区林地和草地的平均侵蚀模数分别增加了2.34和7.32 t/(hm2·a),并且微度以上侵蚀等级的面积有所增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号