首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为了进一步研究黑龙江省夏季降水的气候特征,本研究利用黑龙江省62个台站1961—2017年夏季(6—8月)逐日降水资料,分析夏季降水的时空特征,并将降水划分为小雨、中雨、大雨、暴雨及以上等4个级别,讨论各级别降水对夏季总降水的贡献。结果表明:黑龙江省夏季年平均降水量(略减少)约336.2 mm,1980s降水量最多;年平均降水日数(显著减少)约为42.3天,1960s降水日数最多;年平均降水强度(显著增加)约为7.98 mm/d,1990s和1980s降水强度最大。各等级降水中仅小雨降水量(降水日数)呈显著减少趋势、降水强度呈显著增加趋势;夏季降水量中有超过1/3是由中雨提供给的,有超过1/2是由小雨和大雨共同提供的;降水事件以小雨为主,降水日数中有近3/4为小雨日数。  相似文献   

2.
通过研究甘肃庆阳地区连续性暴雨的成因及特征,为该地区的灾害性暴雨天气预报预警提供参考依据,本研究利用常规气象资料和诊断分析技术分析了庆阳地区2017年8月17—22日连续性暴雨过程。结果表明:(1)连续暴雨前期降水历时短,强度大,分布不均匀,突发性明显;中期持续时间较长,范围广,局地降水强度强,累计降水量较大;后期持续时间长,范围广,分布均匀,累计降水量大。(2)低空急流低层抬升和高空急流抽吸造成了连续性暴雨的发生发展。(3)中尺度云团较为活跃,组织化程度高,持续时间长。(4)前期大气处于极度高能不稳定状态,中期不稳定能量有所下降,后期不稳定能量急剧下降。(5)前期比湿突增明显,跃变值达4g/kg,且比中后期大。  相似文献   

3.
分析浅层土壤水分增量变化对降水量的响应,以期为干旱区藜麦推广种植提供气象科学依据。利用2018—2021年4—10月柴达木盆地东部2个自动土壤水分监测站数据,包括降水量、降水前土壤含水量、降水期间平均气温以及降水历时等资料,利用Excel和SPSS进行统计分析。结果表明:(1)在生长季,与德令哈相比,乌兰小降水事件偏少4%,大降水事件偏多6%,两地土壤水分增加对降水的响应均有滞后性,根据土层深度和降水强度的不同,单次滞后时间在1~63 h之间。(2)同量级降水条件下土层水分增量随深度增加响应逐渐减小,随着降水量级的增大,同深土层含水量响应增大。(3)当累计降水< 5 mm时,0~10 cm土层水分增加有响应;当累计降水为5~10 mm时,0~40 cm土壤含水量以降水前地表含水量的不同而不同程度地响应;当降水量>10 mm时,0~40 cm各层土壤平均含水量增加响应明显。(4)0~10 cm土层含水量对降水的响应与降水期间气温呈不显著的负相关;与降水前该层含水量呈正相关,乌兰显著、德令哈不明显;与降水历时相关性表现显著(P<0.01)。结果可为藜麦各生长期需水量、雨后吸水量及灌溉作参考。  相似文献   

4.
山东夏季及夏季各月降水的时空分布特征   总被引:2,自引:2,他引:0  
旱涝是山东的主要气象灾害之一,为了研究山东的旱涝特征特别是夏季的降水规律,笔者统计了山东省26个气象站1961—2010年共50年的夏季降水资料,以降水量距平百分率为主要指标衡量夏季降水的年际变化,并用谱分析的方法对其进行分析,得到了山东夏季及夏季各月降水的总体趋势、周期特征和空间分布特征。在此基础上,对夏季旱涝年进行了划分,并用标准差的空间分布进一步分析了夏季降水的年际变化。结果表明:山东夏季及夏季各月降水都具有2.1~3.3年左右的短周期和10年左右的长周期;从降水趋势来看,7月和夏季都呈减少的趋势,7月减少的趋势最明显,而6月和8月则呈略微增加的趋势;山东夏季和夏季各月降水的空间分布极为不均,具有明显的地域性特征;夏季旱年和涝年分别为7年和5年。通过本研究发现,山东夏季和夏季各月降水的时间和空间分布都极为不均,因此认识其特征是非常有必要和有意义的。  相似文献   

5.
本文采用新疆奎屯柳沟垦区1998—2016年的数据序列,通过距平图、饼图、柱状图等图表等,统计分析了年、季、月降水量的分布特征和变化规律,得出结论:年降水量年际变化较大,历年平均降水量197.4 mm,年降水量最多年为最少年的2.5倍;年降水量线性趋势呈现出偏少的趋势;季降水量春季﹥夏季﹥秋季﹥冬季;降水量春季呈现出少-多-少的阶段性变化趋势,秋季呈现出多-少-多的趋势,夏季和冬季均呈现出多-少-多-少的变化趋势;一年中降水量时间分布不均匀,降水主要集中在4~10月,2月最少,5月最多;年降水变率为19.6%,季降水变率春季﹥秋季﹥冬季﹥夏季,这与两极比比较得出的季降水量年际间的变化幅度结果相一致。  相似文献   

6.
利用石河子市气象局1960―2010年近51年逐日降水气象资料,使用线性回归方法、M-K突变检验方法、相关性方法,分析石河子降水时空变化规律,结果表明:(1)石河子年降水量变化波动幅度较大,总体呈递增趋势,年降水量每10年增加8.3 mm。20世纪60年代至80年代年降水量逐渐增多,20世纪90年代至21世纪00年代年降水量逐渐递减。(2)降水量季节差异显著,其中夏季平均降水量最多,冬季降水量最少。四季降水量总体呈递增趋势。(3)通过M-K突变检验方法可以得出,石河子年降水量在1984年为突变年。(4)通过相关性分析得出,年降水量与相对湿度之间存在显著的正相关性关系,年降水量与气压、气温、日照时数之间相关不明显。(5)降水形成时大尺度天气形势有欧亚范围维持两脊一槽型、一脊一槽型、南北二支锋区汇合或中纬度锋区分裂短波槽型、南支槽发展东北上型或北支槽发展东南下型4种类型。降水主要发生月份是6~8月,降水的高发时段是每日的18时至22时。  相似文献   

7.
掌握山西省雷暴天气的气候变化特征,可以为该区域灾害性天气的预报预测提供参考依据,更有利于科学地指导工农业生产,达到趋利避害的目的。基于1960—2010年山西省71个国家观测站的雷暴资料,通过求线性趋势、滑动t检验、小波分析等气候统计方法,对山西省雷暴天气的时间和空间变化特征进行详细分析。结果表明:山西雷暴总日数分布呈东北多、西南少的格局;1960—2010年71站雷暴总日数变化总体呈下降趋势,无明显的周期性和突变性。山西大部分站点年雷暴日数呈下降趋势,年雷暴日数呈增加趋势且通过显著性检验的站点仅有4个,主要分布在忻州市的西北部。夏季6—8月是雷暴的高发期,约占全年雷暴的76%;4—5月、9—10月出现的雷暴约占24%;11—3月雷暴发生率很小。各月雷暴日数的空间分布特征不尽相同。3—4月雷暴日等值线由纬向转向径向,呈北少南多、西北少东南多的格局;5—6月雷暴日等值线主要以径向分布为主,呈东北多、西南少的格局;7—10月主要以纬向分布为主,呈北多南少的格局;11—2月雷暴日很少,空间分布特征不明显。雷暴过程的日变化显现80%以上的雷暴过程开始在12—20时,结束在13—21时。各时次结束的雷暴次数变化曲线呈现出副峰型,主峰点在16—17时,副峰点突增在20—21时,21—22时陡降。约60%的雷暴持续时长不超过1 h;约39%的雷暴持续时长在2~6 h;1%的雷暴会持续6~19 h;超过19 h的雷暴基本上没有。  相似文献   

8.
吉奇  赵雷  高巍  林双 《中国农学通报》2015,31(8):169-173
为了进一步探讨降水及洪涝灾害发生规律,合理开发利用本溪山区水资源,利用本溪草河口气象站1953—2012年逐日降水资料,分析了本溪山区6个极端降水指数的变化趋势。结果表明:本溪山区年降水量年际差异较大,年降水量无显著的变化趋势;四季降水量也无明显的变化趋势。年降水日数呈明显的减少趋势,从1974年本溪山区降水日数开始减少;除春季降水日数变化趋势不明显外,其他各季均呈显著的减少趋势变化;夏季在1976年,秋季在1987年发生突变。降水强度无明显的变化趋势;最大5日降水量趋势变化不明显,但年际间差异较大;年极端降水事件无显著的变化趋势,20世纪50、60、80年代为偏多时期。  相似文献   

9.
短时强降水的高分辨率时空分布特征   总被引:1,自引:2,他引:1  
鲁俊  郝莹  陶寅 《中国农学通报》2015,31(25):247-254
为更深入了解短时强降水的气候背景,提高对短时强降水的预报水平及城市的防灾减灾能力,利用安徽79 个气象台站1995—2010 年逐小时降水量数据,基于统计方法对3 个强度等级的短时强降水(≥30 mm/h、≥40 mm/h、≥50 mm/h)的空间、时间分布特征进行分析。结果表明:空间上,安徽省短时强降水主要分布在淮北平原、大别山区和皖南山区。山区的强降雨位于山脉的迎风坡和河谷地带,呈西北—东南带状,与西南急流的方向垂直。相比于山区,淮北平原更易出现极端强降水(≥50 mm/h)。短时强降雨带在6—7 月有1 次明显的北跳,幅度约4 个纬度,与副高的北跳关系密切。时间上,短时强降水月分布呈单峰结构,7 月为最频发的月份。日分布则呈明显的双峰结构,凌晨、午后到傍晚是易发时间段,并且降水强度越强、双峰结构越趋明显。该研究为短时强降水的短时预报及临近预警提供了重要参考。  相似文献   

10.
正和田地区属于暖温带极端干旱荒漠气候。其主要特点是:夏季炎热,冬季寒冷,四季分明,热量丰富,昼夜温差及年较差大,无霜期长,降水稀少,蒸发强烈,空气干燥,气候带垂直分布也较明显。土壤结构松散且生产力低,气温变化大。日照时间长(年日照时间达2 500~3 500h),降水量少,空气干燥,年平均降水量为150mm左右。白萝卜是一个适宜种植在昼夜温差大,热量丰富,充足阳光,土壤质地比较粗、结构松散的土壤。和田地  相似文献   

11.
应用6—9 月太原7 个国家气象观测站1980—2015 年小时降水和月平均气温、2008—2015 年太原63个区域站小时降水、以及ECMWF ERA-interim 月平均再分析资料等,采用气候趋势系数、M-K检验、合成分析及显著性t 检验等方法,分析太原短时强降水时空分布,探讨城市热岛强度变化及环流异常对太原短时强降水的影响。研究表明:近36 年来太原汛期年均短时强降水日数为3.3 天,具有明显的年代际变化;6—9 月短时强降水呈现快速增加、迅速减少的特征,且以20~30 mm/h雨强为主;≥40 mm/h的强降水主要出现在7 月上旬末到8 月上旬;一日中短时强降水在16—17 时最活跃。太原城区短时强降水明显多于北部山区,主要表现在7 月。2008—2015 年区域站观测发现短时强降水呈现6—7 月迅速扩展到全市、8 月向东部收缩、9 月迅速减少并分散出现在东部的特征。近36 年来太原汛期城市热岛强度显著增强、太原城市化主要向南扩张可能是城区南部短时强降水明显增多的影响因素。短时强降水偏多年7 月,500 hPa 上西西伯利亚为高脊区,贝加尔湖为槽区,华北大部位势高度偏低,冷空气偏强,且西太平洋副高比偏少年明显偏西,从而使太原对流有效位能明显偏大,造成太原短时强降水偏多发生;偏少年则相反。该研究可为短时强降水预报和研究、城市防灾减灾提供有益参考。  相似文献   

12.
青海省汛期极端强降水特征及影响   总被引:1,自引:1,他引:0  
为了研究青海省极端强降水在全球变暖背景下的变化及影响,利用青海省1961—2014 年汛期(5—9 月)40 个台站的逐日降水资料,分析了汛期极端强降水事件的变化趋势及非均匀性分布特征,并对极端强降水事件的可能影响进行探讨,以期为抗汛减灾提供决策参考。结果表明:近54 年青海省汛期极端强降水对汛期降水量的贡献呈增长趋势,极端强降水发生的频次增加、强度加重;7 月中旬至8 月中旬是全省极端强降水的多发期,在东部农业区中东部及青南地区东部等极端强降水多发地,应重点关注洪水、滑坡及泥石流等地质灾害。  相似文献   

13.
利用改进的天顶静力延迟(ZHD)模型和本地化水汽权重平均温度(Ts)模型反演怀化地区GPS可降水量(GPS-PWV),并结合自动气象站逐小时资料分析了2017年怀化地区大气水汽变化及汛期14次暴雨以上降水过程的GPS-PWV演变特征。结果表明:GPS-PWV可较好反映怀化地区大气水汽的变化特征。怀化地区可降水量-气压(PWV-P)分布月变化特征明显,冬季PWV较低且变化范围较小,降水发生时气压较夏季平均高14.75 hPa;春季PWV逐步增大,降水发生时气压较冬季有所降低;夏季PWV为全年最高,降水发生时气压则降至全年最低值;秋季PWV-P数据逐渐分散并向可降水量低值区移动,分布情况逐步趋近冬季。2017年汛期怀化地区14次强降水过程中PWV均高于各月均值,最大小时降水量与最大PWV存在较好对应关系;降水开始前,PWV出现较明显上升,且多伴随气压较明显下降,可为局地强降水短临预警提供较好参考。  相似文献   

14.
为了简单分析陕西省降水特征及旱涝灾害的影响,依据陕西省18个气象站点近53年的降水资料,计算出各个站点Z指数及区域旱涝指数,然后通过线性倾向率、M-K突变检验、反距离加权插值法等方法,分析陕西省1961—2013年降水量的时空变化及旱涝频率的分布状态。结果表明:陕西省降水量整体呈降低趋势,并以"减少—增加—减少—增加"的模式发展;随着四季的变化,秋季降水以-58.71 mm/10 a的速率递减,夏季降水增幅最大达35.44 mm/10 a;由于受到自身地理位置及距海远近等因素,使降水量呈现出陕南、关中、陕北依次减少的空间分布状态。经Z指数统计所得,陕西省发生洪涝频率大于干旱频率,但强度弱于干旱;春夏秋冬四季均发生干旱,由各自频数显示冬季旱情最严重;陕西省涝情频率总体呈南多北少的形态,旱情总体分布不均匀且与降水量的空间分布相比二者恰恰相反,通过此次研究为陕西省旱涝灾害提供有效预防措施奠定了基础。  相似文献   

15.
为进一步揭示西藏极端降水变化趋势及特征,为防灾减灾提供参考依据。利用西藏1961—2010年18个有连续气象观测记录站点的逐日降水资料,分析了7个序列降水统计量的变化趋势。发现近50年,西藏平均年降水日数为弱的增多趋势,最长连续降水日数为弱的减少趋势,最长连续降水总量变化趋势不明显,1日和3日最大降水量为弱的增大趋势,年降水量、平均降水强度、强降水日数均为显著增加趋势;平均降水强度显著增大和强降水日数显著增多,是西藏平均年降水量显著增大的最主要原因;西藏的西部和沿江上游地区年降水量减少且趋于集中,干日增多,干期增长,干旱化趋势更加严重。其他大部分地区年降水量增多,平均降水强度增大,强降水日数增多,短时强降水引发的洪涝等灾害可能趋于增多。  相似文献   

16.
西藏地区土壤湿度时空变化特征   总被引:1,自引:1,他引:0  
为了揭示西藏地区土壤湿度季节和区域性变化特征及其与气候要素的相互影响,基于1980—2009 年西藏地区土壤湿度资料以及西藏38 个站点的气温、降水资料,笔者分析了西藏地区土壤湿度的时空分布特征及其与气温、降水的相关关系。结果表明:近30 年来西藏地区年及季节土壤湿度呈现自西北向东南逐渐递增的分布规律,最小值位于阿里地区,最大值在墨脱以南地区,其中秋季土壤湿度最大,其次是夏季,春季最小。年、季土壤湿度均表现为1980s—1990s 减少,随后增加的趋势。年、季土壤湿度在20 世纪90 年代末有显著增加突变点。春季土壤湿度与西藏大部分地区的春、夏降水呈正相关,夏季土壤湿度与西藏沿江一线、东部地区的同期降水呈正相关。  相似文献   

17.
陈其旭 《中国农学通报》2019,35(33):124-130
利用浦口1981—2017年夏季(5—9月)各类强降水资料,采用趋势分析、突变检验和周期分析等统计方法,从时间和量级两个方面对各类强降水特征展开分析,为防灾减灾和精细化预报预警提供支撑。研究结果表明,1)7月上、中旬是致灾性连续暴雨和大暴雨高发期,100~150mm的大暴雨发生频率最高,夏季暴雨量没有明显突变,但具有显著的6a周期;2)达暴雨预警级别强降水一般夜间开始,下午明显减弱,最强降水持续时间在12h左右,短时强降水易发生在中午前后和傍晚;3)有4成的预警信号和一半以上的大暴雨都发生在近10a,但小时最大雨量没有明显增强;4)39%的暴雨达到橙色预警标准,但红色仅有1次。地理位置和自然环境是浦口比南京主城区及周边强降水强度大的主要原因。  相似文献   

18.
为了分析强El nino 衰减年(1998 年和2016 年)松花江流域夏季降水异常成因,提高松花江流域夏季降水预测能力。采用松花江流域97 站逐日降水资料,NCEP/NCAR再分析资料等资料,通过合成分析、相关分析等多种物理诊断方法分析1998 年和2016 年夏季降水异常成因。结果表明:仅仅依靠强El nino 事件的结束时间和强度还不能确定松花江流域夏季降水变化,还需要考虑中高纬环流及其大气内部的自身演变过程,例如东北冷涡的强度和发生时间,欧亚中高纬环流阻高的变化。需要综合考虑海温、副热带系统和中高纬环流系统的异常变化给松花江流域夏季降水带来的影响,从多因子角度诊断和预测松花江流域夏季降水,从而提升预测水平,为气象防灾减灾和农业生产服务提供决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号