首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
六旋翼植保无人机旋翼折叠机构有限元分析及拓扑优化   总被引:1,自引:0,他引:1  
为实现某六旋翼植保无人机轻松折叠和轻量化设计的目标,以该六旋翼植保无人机旋翼折叠机构为研究对象,采用ANSYS Workbench有限元软件对其进行静态特性分析和模态分析,得到静力学分析结果和前6阶固有频率及对应振型。随后进行拓扑优化,对旋翼折叠机构进行去除材料的形状优化,根据拓扑优化云图在SolidWorks中对其形状尺寸修整和三维模型重建,将优化后的旋翼折叠机构三维模型再次导入ANSYS Workbench有限元软件进行静力学计算和模态分析,对优化前、后旋翼折叠机构的静力学特性和动态特性进行对比与分析。结果表明,旋翼折叠机构质量由最初的152.98 g减少至140.22 g,六旋翼植保无人机总重减少76.56 g;全新的旋翼折叠机构强度与刚度均在许用应力范围内,并且该机构在工作中不会发生共振,确定拓扑优化的可行性。  相似文献   

2.
农用油动植保无人直升机在航空作业时因受到发动机、旋翼、传动箱动力载荷激励作用与无人机表面附面层紊流强度的影响,导致机身及相连施药关键部件的振动。若机架与喷杆连接点的激励频率与喷杆固有频率接近或相等,则会引起两者共振,强烈的振动甚至会影响无人机的飞行姿态。因此,为了保证植保无人机的安全飞行,获得机架的振动特性是研究的首要任务。为此,以小型油动无人直升机为研究对象,建立无人机机架的有限元模型,应用ANSYS Workbench对模型进行自由振动状态下的模态分析,获得前8阶非刚体模态固有频率和振型,通过模态试验验证模型的准确性。试验中,试验模态与解析模态模态频率差均小于10%,模态置信准则均大于0.8,试验结果表明:有限元模型能够反映机架振动特性,随着机架固有频率的增长,振型变化越来越复杂,由机体单向摆动向机体多向同时扭摆转变,变形最大部位在喷杆、起落架、尾管处。该研究为后续展开谐响应分析与喷杆结构优化研究提供了理论依据,旨在避免喷杆与机体产生共振。  相似文献   

3.
对喷杆喷雾机等腰梯形悬架进行了改进,通过对等腰梯形悬架平衡条件进行理论分析,得到了等腰梯形悬架的平衡方程,提出了基于变单拉杆长度悬架的控制方法,并得出了控制方程。将该变单拉杆长度悬架机构应用于3WZC-2000型超高地隙自走式喷杆喷雾机上,进行了实验室与田间实验。结果表明:当喷雾机在倾斜角度为±10°的路面行走时,该悬架系统能够满足调节平衡的要求。  相似文献   

4.
单旋翼植保无人机翼尖涡流对雾滴飘移的影响   总被引:6,自引:0,他引:6  
文晟  韩杰  兰玉彬  尹选春  卢玉华 《农业机械学报》2018,49(8):127-137,160
为研究单旋翼植保无人机翼尖涡流对雾滴飘移的影响特性,基于格子玻尔兹曼(Lattice-Boltzman,LBM)方法的自适应细化物理模型,对单旋翼无人机的旋翼流场进行了数值模拟。通过改变无人机喷杆的垂直距离和喷头在旋翼下方的位置,研究了不同飞行速度下,无人机翼尖涡流对雾滴飘移的影响规律。为捕获到不同粒径的雾滴在无人机下洗流场中的运动轨迹,采用基于拉格朗日离散相粒子跟踪法模拟了雾滴的运动轨迹。为验证数值模拟的准确性,进行了试验验证,研究结果表明:当无人机飞行速度大于3 m/s时,机身后方开始出现螺旋型尾涡,且飞行速度越大、飞行高度越高,尾涡向机身后方的扩散距离越远;当飞行速度为5 m/s、飞行高度为3 m时,38%的雾滴因螺旋尾涡而造成空中飘移,其中粒径小于100μm的雾滴约占总飘移雾滴数的80%;喷杆距离主旋翼的高度对雾滴因翼尖涡流造成的飘移影响不明显,但喷头的位置越靠近主旋翼的边缘,雾滴越容易被翼尖涡流卷吸。  相似文献   

5.
多旋翼植保无人机风场下喷洒方式对有效喷幅的影响   总被引:1,自引:0,他引:1  
为研究多旋翼无人机风场下喷头布置对有效喷幅的影响,基于SolidWorks 2016软件对多旋翼无人机前、中、后螺旋桨喷洒区域风场进行模拟仿真分析。在此风场下,通过改变喷头安装位置,研究机身前方两个螺旋桨不同旋向时无人机旋翼风场对雾滴有效喷幅的影响。试验结果表明,无人机旋翼旋向和喷头布置对有效喷幅有显著影响:当机身前方两个螺旋桨为内旋、飞行速度为4m/s、飞行高度为2m时,喷头前置和后置的有效喷幅分别为3m和2m;相比机身前方两个螺旋桨为外旋时,雾滴总沉积密度分别高出26.8%和66.7%,且有效喷幅分别多出1m和0.5m。该结果可为无人机植保作业过程中耦合风场扰动下雾滴的漂移、沉积的进一步研究提供参考。  相似文献   

6.
为提高水田自走式喷雾机喷施作业均匀性,设计了喷杆自动调平系统,包括自动调平机械结构、喷雾机车身倾角传感器和控制器,以及车身倾角传感器和控制器的硬件系统和软件系统,并研究了对加速度计和陀螺仪数据进行融合的卡尔曼滤波算法和喷杆自动调平PID控制算法。以井关JKB18C型喷雾机为平台,采用叉车调节喷雾机车身倾斜角度,用2台MTI-300高精度惯性传感器分别测量喷雾机车身和喷杆倾角,并进行了测试试验。结果表明:随着车身倾角变化速率的增加,喷杆倾斜角度的平均绝对误差、均方根误差和最大误差增大,平均绝对误差最大为0. 90°,均方根误差最大为1. 39°,最大误差为1. 70°,车身倾角变化速率对喷杆控制精度影响较大。为检测喷杆自动调平控制系统的田间作业性能,采用双天线RTK-GNSS导航定位系统测量喷雾机作业过程中喷杆水平倾角,并进行了田间试验。试验结果表明:喷杆相对于水平面的平均绝对误差最大为0.79°,均方根误差最大为0. 85°,最大误差为1. 70°,喷杆自动调平控制系统可以有效地控制喷杆的水平姿态。  相似文献   

7.
为了解单旋翼无人机飞行速度对于其喷雾流场和雾滴沉积分布的影响,采用ANSYS FLUENT开展了单旋翼无人机喷雾作业气液两相流场的数值分析研究,重点分析了单旋翼无人机的飞行速度对于其喷雾流场的影响规律。数值分析的结果表明:单旋翼无人机下方的旋翼风场沿主旋翼的旋转方向具有一定的旋转分量,气流流速随离地高度的增大而增大;随着单旋翼无人机飞行速度由3m/s增加至5m/s,雾滴轨迹与水平线的夹角由25°减小到17°,沉积采样带上的变异系数CV均值由0.95减小到0.3;随着飞行速度的增大,雾滴沉积均匀性随之提高,单旋翼无人机的飞行速度对于其雾滴沉积均匀性具有显著影响。本文采用了更为贴近于实际的CFD模拟方法,可以比较准确地模拟出实际的雾滴沉积情况,为单旋翼无人机实际作业提供具有参考价值的指导。  相似文献   

8.
针对四旋翼无人机在喷施肥作业中应用少的问题,设计一台四旋翼无人机和液态肥相结合的试验台,研制一套旋翼无人机水稻叶面肥喷施控制系统。试验以四旋翼无人机为基础,以旋翼无人机的喷孔为研究对象,实现对大面积农田液态肥高效、便捷、损耗少的喷施效果。因室内不同飞行参数和外部风速变化对无人机有效喷雾范围的影响,运用Design-expert 8.0.6对液滴沉积测试结果进行数据处理,根据有效喷雾范围的理论宽度和实验室测试分析外部环境条件变化对有效喷雾范围的影响,建立有效喷幅和参数之间的回归模型,确定适合现场运行的四旋翼无人机的最佳参数组合。试验结果表明:在室内试验中,当行驶速度一定时,有效喷幅随着无人机作业高度的增加先增加后减小,最佳的无人机喷药高度在2.0~2.5m范围内,有效喷幅范围为4.6~5.5m;当无人机作业高度一定时,有效喷幅随速度的增加先增加而后变小,当无人机高度在2.5m,行驶速度为1m/s时得到最佳有效喷幅,宽度为5.5m,变异系数为24.8%。  相似文献   

9.
现有的大型喷杆喷雾机的喷杆大多采用传统桁架结构,随着喷杆长度的增加,配套机构、设计复杂度及整机质量相应增加,整机质量大,农田中行走的通过性差,陷车风险高;喷杆平衡控制难度加大,降低了整机的可靠性和便利性;特别是在水田喷施作业中,大型喷杆喷雾机的功能受到很大限制。本文提出了一种旋翼悬浮式喷杆,分别融合地面机械高续航、载重大和空中无人机作业灵活、受地形地貌限制小的优点,并设计了自动调平控制系统以实现喷雾机喷杆在喷施作业过程中保持水平姿态。分析了喷杆的受力情况,对自动调平控制系统进行了辨识和建模,采用“陀螺仪+激光雷达”进行双传感器融合控制的方式,开展了旋翼悬浮式喷杆自动调平控制算法的仿真试验、台架试验和田间试验。试验结果表明:采用双传感器融合的模糊PID控制算法优于单传感器的角度PID控制算法,可较好地避免出现失稳状态;在田间试验中,当喷杆进入稳定状态后,整根喷杆各点离地高度均值在1.4~1.5m之间,标准差不大于0.1027m,具有较好的水平度;所采集的10个不同时刻喷杆各点高度均值的变异系数为1.40%,说明喷杆悬浮高度的稳定性较好。该研究验证了旋翼悬浮式喷杆作业方法的可行性。  相似文献   

10.
针对传统机械式喷杆折叠展开过程复杂、同步协调操作性差、机械振动明显等问题,结合东北地区水田植保农艺特点,设计了一种单油缸多折叠机构喷杆。阐述分析了多折叠机构喷杆的结构及工作原理,依据解析法对其各部分杆长进行确定。通过正交试验设计和虚拟仿真技术进行多因素正交试验,探究了不同壁厚下各类型钢管对喷杆质量和第1阶固有频率的影响,应用Design-Expert 8. 0. 6软件对试验结果进行分析优化。优化结果表明,当圆钢管壁厚、矩形钢管壁厚和方钢管壁厚分别为2、2、2 mm时,质量最小,为62. 85 kg,此时动态特性较好,其第1阶固有频率为14. 84 Hz,避开了路面激励频率。运用ANSYS-workbench软件建立了喷杆的有限元模型并进行了数值模态分析,求解了喷杆的前4阶非零模态频率和振型,并通过模态试验验证了数值模型优化结果的准确性。田间试验表明,该机具作业性能稳定,药液喷施均匀,覆盖性较好,作业过程中喷杆无明显振动,各项指标满足水田植保农艺要求。  相似文献   

11.
大载荷植保无人直升机喷雾气液两相流动数值模拟   总被引:2,自引:0,他引:2  
为研究大载荷植保无人直升机喷雾流场特性,基于FR-200型大载荷植保无人直升机喷洒系统,建立FR-200型大载荷植保无人直升机无植物冠层三维雾滴沉降仿真模拟平台,利用Fluent软件的SST k-ω湍流模型和DPM离散相模型对无人直升机喷雾沉降过程进行了仿真模拟,分别研究了飞行速度、喷杆相对位置、喷施角度对喷雾流场的影响,并进行户外试验验证。试验结果表明,下洗流场垂直方向速度(Z向)呈不对称分布,旋翼x/R为0.8处垂直方向速度(Z向)最大;仿真模拟的雾滴沉积总量与户外试验的雾滴沉积密度基本一致,线性决定系数R2为0.999 6,无人直升机前飞速度与雾滴群抗飘移系数及沉积量呈线性关系,前飞速度3 m/s时,靶标上雾滴总沉积密度为4.208μL/cm~2,前飞速度5 m/s时,靶标上雾滴总沉积密度为1.766μL/cm~2;随着采样面的升高,雾滴群抗飘移性能增强;位于喷杆不同位置处喷头的抗飘移性能不同,主要表现在位于喷杆两端的喷头1和9受到旋翼尾涡的影响,雾滴群抗飘移性能变差,机身正下方的喷头5由于机身阻挡作用,造成雾滴群分散性增加,雾滴因垂直方向动能衰减而难以到达采样面;喷施角度越小,雾滴群总体抗飘移性能越好。  相似文献   

12.
旋翼悬浮式喷杆分别融合了地面机械和空中无人机的优点,可简化复杂的桁架结构并通过旋翼下压风场能减小雾滴飘移造成的二次污染,具有较好的应用前景。传统的收放方式难以收放旋翼悬浮式喷杆,为此提出了一种以正四边形滚筒为主体的喷杆自动收放装置,建立了喷杆收放过程的D-H坐标系和正运动学模型,通过牛顿-欧拉法构建了动力学模型,并采用三次均匀B样条曲线轨迹规划获取了喷杆收放最优轨迹。以喷杆收放的运动时间、关节冲击和能量消耗为多目标函数,通过NSGA-Ⅱ算法求解Pareto解集,选取解集中喷杆展开时间为56、61、66、71、76、81 s,喷杆收卷时间为54、59、64、69、74、79 s轨迹进行喷杆收放试验。试验结果表明:喷杆运动时间与喷杆角度标准差存在显著性关系,运动时间越短,喷杆稳定性越差、关节冲击越大、能量消耗越多。取喷杆收放时间59、61 s对应轨迹为喷杆收放最优轨迹时,滚筒转速与规划转速的平均跟踪误差不超过0.201(°)/s,关节3、4、5实际运动角度与规划角度的平均跟踪误差不超过6.201°,喷杆能较好地跟踪最优轨迹完成收放。该研究验证了喷杆自动收放装置的有效性和喷杆收放最优轨迹的准...  相似文献   

13.
针对丘陵山地拖拉机坡地适应性差,易翻倾,通过性差等问题,设计一种具有自动调平机构的504型丘陵山地拖拉机。整机采用机械传动,四驱轮式行走系统,两侧独立传动转向系统,平行四杆自动调平机构,可实现拖拉机姿态自动仿形调平。基于SolidWorks对拖拉机进行整机三维建模,运用ADAMS软件对虚拟样机进行侧倾稳定性动态仿真分析。结果表明: 自动调平机构调平动作范围732 mm,可在25°的坡地上保证车身横向水平。上坡极限翻倾角及下坡极限翻倾角均为45°,上坡纵向滑移角为33.69°,下坡纵向滑移角为16°,前后驱动轮越障高度为214 mm。调平状态下车身的最大侧倾角为37.5°,与理论计算35.93°非常接近。该机前后驱动桥均可进行独立调平,保证机身始终处于水平姿态,能够满足丘陵山地生产作业要求。  相似文献   

14.
生草制矮砧密植园苹果园草势生长状态可有效控制果园水分,协调果园微域环境。为此,利用数学模型分析了平行四杆机构的运动参数,确定了割茬高度调节手柄转动角度与割茬高度间对应的数学关系。分析表明,高度调节手柄转动角度α为-16.13°,-9.59°,-3.18°,3.18°,9.59°和16.13°等6个角度时,对应割茬高度为50,60,70,80,90,100mm,实现了割茬高度精确控制;同时,应用AIP软件创建割茬高度调整机构数字样机,满足割茬高度的有级调整要求。  相似文献   

15.
为提高田园管理车前悬架作业性能和稳定性,通过构建多功能田园车前悬架三维模型,并建立起伏路面的拟合曲线,在虚拟仿真软件ADAMS中建立前悬架参数化仿真模型,对前悬架进行优化。优化后:主销内倾角变化量从6.52°~8.23°降低到7.08°~7.53°,优化率为73.7%,主销后倾角变化量从3.80°~3.82°降低到2.68°~2.69°,优化率为50%,车轮外倾角变化量从0.18°~1.05°降低到0.18°~0.73,优化率为36.8%,前束角变化量从-0.43°~1.43°降低到0.04°~0.74°,优化率为62.4%;对上摆臂柔性化处理后进行动力学分析,得到节点4355为最大应力点,前6阶模态的频率可近似为0,实测中上摆臂的1阶固有频率为33 Hz左右,上摆臂不会出现共振;仿真与试验得到前悬架上摆臂与转向节连接处球铰点最大受力分别为3 984 N和4 180 N,二者相对误差为4.689%,上摆臂试验测得模态结果与仿真结果误差均值为4.56%,与实际较为吻合,本文研究结果可为田园管理车前悬架优化设计提供参考。  相似文献   

16.
双钟摆主被动悬架式大型喷雾机喷杆动力学仿真与试验   总被引:3,自引:0,他引:3  
大型喷杆式喷雾机在田间作业时,喷杆运动严重影响了喷雾分布,悬架系统是控制喷杆动力学行为的关键装置,既要隔离来自车体的高频扰动,又要使喷杆跟踪低频的地面坡度变化,时刻保持与地面(或作物冠层)平行。为了研究双钟摆主、被动悬架机构的动力学特性,综合考虑车体运动耦合作用、地形坡度变化、摩擦等因素,使用第二类拉格朗日动力学方法建立描述喷杆动力学行为的数学模型。首先进行被动悬架动态特性研究,分析阻尼、摩擦、摆钟长度等因素对响应特性的影响;然后建立基于液压比例控制的主动悬架Matlab/Simulink仿真模型,揭示控制系统增益系数、时间常数、悬架结构参数等对喷杆响应特性、跟踪误差的影响规律。利用Stewart六自由度运动模拟平台及动态测试系统,对28 m大型喷杆悬架系统进行瞬态响应测试和频响测试,频响试验值与数学模型预测值均方根误差为0.087,表明模型可用于预测喷杆动态响应特性,指导悬架参数科学配置。  相似文献   

17.
针对目前植保机械中所使用的喷杆喷架稳定性差、折叠伸展需要人工辅助等问题,设计出了一种液压升降折叠宽幅喷杆喷架。对喷杆喷架的升降装置、90°液压油缸折叠机构、180°液压油缸折叠机构和整体宽幅喷架进行了理论分析和结构设计,并建立了关键部件的三维模型。通过田间试验验证了该装置设计方案的合理性,为研发先进适用、具有自主知识产权的液压升降折叠宽幅喷杆喷架奠定了基础。  相似文献   

18.
果园施药机械资源消耗水平评价模型研究   总被引:1,自引:0,他引:1  
在施药机械满足喷雾质量前提下,为降低果园施药综合成本,需要对果园施药机械资源消耗水平进行评估。本文选择典型地面风送喷雾机、单旋翼和六旋翼植保无人机进行果树施药试验,对比分析冠层雾滴沉积分布、雾滴穿透性、地面雾滴流失等主要喷雾效果指标,结果表明:3种施药机械在树冠纵向各层、横向各层雾滴沉积密度均大于25滴/cm2,能够满足果园植保要求;比较冠层雾滴分布/沉积均匀性,树冠纵向沿送风方向整体呈下降趋势,树冠横向由外到内整体呈下降趋势,变异系数最高分别达63.54%和79.19%;对比雾滴穿透性,风送喷雾机较优,纵向与横向变异系数最大为5.35%,单旋翼植保无人机横向最差,变异系数为35.20%,而六旋翼植保无人机纵向最差,变异系数达40.77%。但单旋翼和六旋翼植保无人机地面雾滴流失量分别是风送喷雾机的2.78%和12.50%,减少了农药浪费。进一步综合施水量、施药量、用工量、作业时长和作业能耗等指标,采用基于变异系数客观赋权法与主观赋权法两种线性加权方法,构建了施药装备资源消耗水平评价模型,验证结果均表明,综合资源消耗由小到大依次为单旋翼植保无人机、六旋翼植保无人机、风送喷雾机;两种评价方法的资源消耗综合评价指标值变异系数分别为110.2%和74.2%,说明基于变异系数客观赋权法的评价模型,综合指标值之间差异更明显、评价效果更符合实际。  相似文献   

19.
粳稻多旋翼植保无人机雾滴沉积垂直分布研究   总被引:8,自引:0,他引:8  
为研究多旋翼植保无人机低空喷施作业过程中,水稻垂直方向雾滴沉积的分布规律,在水稻冠层叶片、中部叶片、底部叶片分别放置了雾滴测试卡,收集植保无人机喷洒过程中的雾滴信息。使用清水代替农药来模拟喷施过程,利用雾滴沉积分析软件i DAS分析雾滴测试卡,得出植保无人机雾滴在水稻垂直方向的分布结果。试验结果表明:植保无人机低空喷雾在水稻垂直方向的雾滴覆盖率存在显著差异,有效喷幅内旋翼下方区域的雾滴覆盖效果最好,而远离旋翼的位置,雾滴覆盖率较差。从水稻垂直方向的不同位置分析,雾滴总体覆盖率为冠层54.86%,中部32.69%,底部24.7%;水稻垂直各位置的粒径分布中,平均粒径范围处于110~140μm之间,粒径大小适合植物病虫的防治。冠层的点密度最大,而水稻中间部位和水稻底部的点密度分布较为相似;水稻中部雾滴扩散比(0.465)优于冠层(0.38)和底部(0.31),整体喷雾的雾滴扩散比与相对粒谱宽度的数值均低于正常值(0.67)。  相似文献   

20.
针对四旋翼植保无人机坡地适应性差、作业时定高精度低的问题,提出了一种融合立体视觉、气压计及惯性测量单元(IMU)的多速率卡尔曼滤波估计无人机高度的仿地飞行方法。首先基于无人机实时高度、姿态与最佳视觉检测区域之间的关系,提出了视觉检测区域自适应算法;然后融合多传感器信息建立多速率卡尔曼滤波模型用以估计无人机对地高度;最后通过自主飞行实验对无人机高度估计算法与仿地飞行方法进行验证。实验结果表明,当飞行高度为2 m,飞行速度为1、2、3 m/s时,植保无人机在平坦地面与15°缓坡区域均可实现高度估计平均绝对误差小于20 mm,高度估计标准差小于30 mm;高度控制平均绝对误差小于30 mm,高度控制标准差小于30 mm;本文验证了植保无人机在地形变化场景下仿地飞行的有效性,为植保无人机在复杂地形自动化作业奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号