共查询到18条相似文献,搜索用时 107 毫秒
1.
根据制种玉米与其他作物在中高分辨率遥感影像上的光谱和纹理差异,利用多源遥感数据,以提取制种玉米种植田为研究目标,提出了作物多时相光谱特征分析的植被指数体系,多维度反映了作物不同光谱差异;在纹理检测前加入图像旋转不变处理,解决了遥感影像中作物田纹理方向问题;最后构建了多时相光谱特征和高空间分辨率遥感影像LBP-GLCM纹理特征的制种玉米田识别方法体系。以新疆霍城县为研究区,利用上述方法体系结合随机森林分类器,通过实验得到分类总体精度为90.57%,Kappa系数为0.79,制种玉米田分类结果用户精度为99.20%,制图精度为86.68%,基本满足对制种玉米田的识别需求。 相似文献
2.
针对遥感技术区分制种玉米与大田玉米的技术难题,以不同源、不同时相遥感数据,构建了多时相OLI/Landsat-8结合Geo Eye-1高分纹理制种玉米识别方法。首先以多时相OLI/Landsat-8构建各地类EVI时序曲线,利用地类的物候差异,以C5.0决策树算法识别玉米,然后针对制种玉米与大田玉米田块的纹理差异,利用Geo Eye-1高分影像纹理信息进一步以阈值法识别制种玉米。最后,以甘肃省张掖市临泽县为研究区,对提出的方法进行了试验验证,结果显示,多时相OLI/Landsat-8总体分类精度为86.31%,Kappa系数为0.81。玉米识别的用户精度为88.39%,制图精度为95.35%,可满足进一步对制种玉米的识别。依据Geo Eye-1高分遥感影像的纹理差异,识别制种玉米,用户精度为86.37%,制图精度为83.02%,高于只利用单一OLI/Landsat-8数据源的分类精度。 相似文献
3.
为快速、准确地从高分影像中获取猕猴桃种植分布信息,提出了一种结合小波变换纹理分析和随机森林分类的QuickBird影像猕猴桃果园自动提取方法。首先,采用coif5小波对QuickBird全色影像进行多尺度小波分解,计算各子频带小波系数的能量特征作为纹理特征;然后,将小波纹理与光谱特征组合构建分类特征;最后,利用随机森林分类实现土地利用分类和猕猴桃果园空间分布提取。结果表明,小波纹理识别猕猴桃果园的效果明显优于光谱特征和其他2种纹理特征;光谱+小波纹理特征的分类精度最高,猕猴桃果园提取精度(Fk)和总体分类精度(OA)分别为95.30%和94.46%,比光谱+灰度共生矩阵纹理分类分别提高6.70%和2.88%,比光谱+分形纹理分类显著提高13.43%和6.98%;随机森林分类结果优于相同特征下的支持向量机、最大似然分类。本文提取的猕猴桃果园面积与目视解译结果的相对误差小于7%。此外,利用本文方法对同期QuickBird影像另一研究区的苹果园分布进行提取,结果表明,该方法对苹果园提取有较好的适用性。 相似文献
4.
森林作为陆地生态系统的重要组成部分,因其巨大的碳储量和固碳能力而备受关注,利用高分1号卫星的NDVI数据(GF-1 NDVI)可实现森林覆盖的定量提取。然而,由于受阴雨天气、运行成本等因素的影响,难以形成GF-1 NDVI时间序列数据,无法满足森林覆盖高精度提取的需求,为此,以河南省嵩山部分地区为实验区,应用STAVFM算法融合GF-1/WFV NDVI与MODIS NDVI,生成8 d步长的GF-1/WFV NDVI时间序列数据,在此基础上,提取NDVI特征并与GF-1/WFV的光谱特征进行组合,最后,采用SVM分类方法实现研究区森林覆盖的定量提取。研究结果表明,利用STAVFM算法生成的GF-1/WFV NDVI时序数据效果理想,很好地解决了GF-1 NDVI时序数据的缺失问题,由其NDVI特征与GF-1/WFV光谱特征构成的组合能够实现森林覆盖的有效提取,基于SVM分类后的总体分类精度为94.72%,与未融入NDVI特征的GF-1/WFV原始影像的分类结果相比,提高了4.90个百分点。 相似文献
5.
以北京市怀柔区柞树林为研究对象,通过计算ALOS卫星2.5 m分辨率融合影像在不同窗口下的纹理特征及衍生纹理指数,采用多元逐步回归模型建立柞树地面实测蓄积量与ALOS影像纹理特征及衍生纹理指数的相关关系,比较纹理特征及衍生纹理指数拟合柞树蓄积量模型的精度,筛选最优反演模型及最优纹理生成窗口。结果表明:同一纹理生成窗口下,基于衍生纹理指数的柞树蓄积量反演模型(R2adj=0.603、RMSE为19.899 4 m3/hm2)精度优于基于纹理特征的柞树蓄积量反演模型(R2adj=0.217、RMSE为27.943 8 m3/hm2);结合同一窗口的纹理特征及衍生纹理指数进行柞树蓄积量建模,精度可进一步提升(R2adj=0.747,RMSE为15.887 6 m3/hm2);基于所有窗口的纹理特征及衍生纹理指数建立多元逐步回归模型,可得到柞树蓄积量估测的最优模型(R2adj=0.807,RMSE为13.856 5 m3/hm2);11×11窗口为最优纹理生成窗口,其对应最优单窗口模型拟合优度为:R2adj=0.747,RMSE为15.887 6 m3/hm2。 相似文献
6.
针对湿地季节性变化特点和不同湿地类型植被覆盖的差异,综合利用多时相GF1-WFV和GF3-FSⅡ极化特征数据,开展湿地精细分类方法研究。首先,对13期GF1-WFV影像的光谱信息、植被指数和水体指数,利用随机森林算法(Random forests,RF)的OOB样本,优选出50个特征值,进行湿地初分类;然后,针对分类结果中沼泽草地、灌丛沼泽和沼泽地混分,部分湿地类型识别精度低的问题,利用1期植被生长旺盛期的GF3-FSⅡ双极化SAR影像,从强度和幅度两个维度进行后向散射特征分析,优选σFD-HH进行部分湿地类型识别;最后,以吉林省大安市为研究区进行实例验证与分析,结果表明,湿地分类总体精度为86. 23%,Kappa系数为0. 82。本文研究结果可以为湿地资源调查和管理提供技术支撑。 相似文献
7.
为准确估算森林采伐生物量实现森林碳汇的精准计量,针对采用单一时相可见光无人机影像估算高郁闭度森林采伐生物量较困难的问题,基于伐区采伐前后多时相可见光无人机影像,研究森林采伐生物量高精度的估算方法。以福建省闽侯白沙国有林场一个针叶林采伐小班为试验区,采集分辨率优于10 cm的采伐前后多时相可见光无人机影像,采用动态窗口局部最大值法得到高精度的采伐株数与单木树高信息,再基于采伐后无人机影像,运用YOLO v5方法检测并提取伐桩直径信息,根据胸径-伐桩直径模型来估算采伐木胸径信息,再利用树高和胸径二元生物量公式估算采伐生物量,以实测数据进行验证。根据动态窗口局部最大值法获取株数与平均树高精度分别为96.35%、99.01%,运用YOLO v5方法对伐桩目标检测的总体精度为77.05%,根据伐桩直径估算的平均胸径精度为90.14%,最后得到森林采伐生物量精度为83.08%,结果表明这一新方法具备较大的应用潜力。采用采伐前后多时相无人机可见光遥感,可实现森林采伐生物量的有效估算,有助于降低人工调查成本,为政府及有关部门进行碳汇精准计量提供有效的技术支持。 相似文献
8.
为探讨如何利用遥感影像自动解译技术,实现冬小麦种植情况统计调查、提高提取精度,选择冬小麦关键生育期6个时相的高分二号遥感影像数据,分别从6个时相的近红外灰度(NIR)、红波段灰度(R)、绿波段灰度(G)、蓝波段灰度(B)、比值植被指数(RVI)、归一化植被指数(NDVI) 6个特征中优选出对冬小麦面积提取最敏感的1个特征作为输入变量,每个时相选择1个特征,6个时相共选出6个特征作为输入变量,利用随机森林算法构建模型,提取冬小麦空间分布特征。选择研究区不同长势、不同种植品种的地块样本构建训练集,利用多时相特征构建模型,并将模型推广应用于整个大厂回族自治县,得到大厂回族自治县冬小麦的空间分布情况。通过与统计结果对比分析,经过多时相特征优选构建的模型对冬小麦的识别精度接近90%。经过样本优化和后期处理仍可提升精度,此方法能在保证提取精度的前提下对冬小麦进行快速提取,提高相应的工作效率。 相似文献
9.
为了提高硬皮甜瓜缺陷分类的正确率,提取基于纹理和颜色的综合特征,采用支持向量机分类器构造了甜瓜缺陷的自动检测系统。对甜瓜图像可疑区进行了纹理分析,提取灰度共生矩阵的4个特征参数,经过比较实验得出,对比度和角二阶矩2个参数对甜瓜瓜蒂、花萼、擦伤和霉变有明显的可区分性。在可疑区域上提取了由R、G、B分量及其算术运算组成的12种颜色特征,通过实验筛选出4种具有较好区分性的颜色特征。实验结果表明,由这些优选出的纹理与颜色特征组成的综合特征及支持向量机分类器对甜瓜缺陷的识别正确率达到92.2%。 相似文献
10.
针对空间异质性导致的冠层等效水厚度(Equivalent water thickness, EWT)反演误差较大的问题,以4块长势差异较大的玉米田为研究对象,分别采集6个关键生育节点的EWT数据,同时利用无人机多光谱遥感技术获取田间的正射影像。以滑动窗口的方式提取遥感影像不同窗口空间尺寸(0.1m×0.1m~2.0m×2.0m)的光谱和纹理信息,经多重共线性检验后,应用主成分分析法(Principal component analysis,PCA)分别对光谱参数(Spectral parameters,S)、纹理参数(Texture parameters,T)及光谱与纹理组合参数(Spectral and texture parameters,S+T)进行降维,进而分别利用偏最小二乘法(Partial least squares,PLS)、随机森林(Random forest,RF)以及支持向量机(Support vector machine,SVM)构建EWT反演模型,而后利用Kruskal-Wallis检验模型的精度,并根据多重检验结果探讨最佳窗口尺寸的选择。结果表明:随着窗口空间尺度的逐渐增大,EWT反演模型的精度呈先增大后减小趋势;以S+T作为输入参数构建的模型精度显著优于S和T,引入纹理特征后,基于PLS、RF和SVM的模型最优窗口尺寸校正决定系数(Adjusted R-square,R2adj)分别增加0.16、0.05和0.12,相对均方根误差(Relative root mean square error,RRMSE)分别减小4.95%、1.17%和3.80%,表明纹理特征可以提高EWT模型反演精度;综合比较不同建模方法构建的9组模型,确定最优采样窗口空间尺寸为0.7m×0.7m(R2adj最高可达0.82,对应的RRMSE为16.57%)。该研究可为基于无人机多光谱影像分析的信息挖掘和EWT监测提供参考。 相似文献
11.
以3个月尺度的标准化降水蒸散指数(SPEI3指数)为因变量,采用融合多源遥感数据的随机森林(RF)算法构建淮河流域2001—2014年作物生长季(4—10月)的农业干旱监测模型,采用简单线性回归、偏差估算法、旋转残差法和最优角度残差旋转法4种方法进行模型结果校正,以决定系数(R2)、均方根误差(RMSE)及干旱等级监测准确率对模型监测能力进行评估。选取最优校正方法,构建随机森林偏差校正干旱监测模型(Bias-correcting random forest drought condition,BRFDC),通过站点实测土壤相对湿度及干旱事件记录对模型干旱监测能力进行验证。结果表明:采用最优角度残差旋转法校正后,模型模拟精度指标R2和RMSE分别为0.897、0.874和0.335、0.362,优于其他校正方法;偏差估算法对各类干旱等级监测更为准确,尤其是对极端干旱的监测准确率最高,达到33.3%~50.0%,最终采用偏差估算法作为最优校正方法,构建BRFDC模型;相比SPEI3,BRFDC模型计算指数与大部分站点土壤相对湿度的相关性更加显著(P 0.01),适于农业干旱监测; BRFDC模型能够准确监测淮河流域2001年严重干旱事件的时空演变过程,并能有效识别极端旱情。该模型可为淮河流域农业抗旱工作的有效开展提供科学依据。 相似文献
12.
利用随机森林方法(Random forest,RF)集成多源遥感数据,构建一种多因子集成的旱情状态指数(Integrated drought condition index,IDCI-RF),利用该指数对我国北部区域旱情状态进行评估。首先基于相关性分析方法选取旱情因子,然后利用RF回归方法构建IDCI-RF指数,并通过与Cubist和Bagging方法对比检验RF算法的拟合效果,最后对IDCI-RF指数的空间旱情监测精度进行验证。试验结果表明,所提出的IDCI-RF与实测SPEI-3的平均决定系数R2为0. 54~0. 68,优于Cubist和Bagging方法; IDCI-RF指数在研究区各省份均能较好地拟合实测指数,R2均在0. 7以上;大部分站点的IDCI-RF变化规律与实测SPEI-3保持一致;由IDCI-RF监测图反映的研究区旱情状态与实测SPEI-3分布特征吻合度较高,表明IDCI-RF指数在实际大范围旱情监测中具有较大的应用潜力。 相似文献
13.
为快速准确监测作物长势,以冬小麦为研究对象,获取了不同生育期的无人机高光谱影像。利用无人机高光谱数据构建光谱指数,并分析4个生育期的指数与生物量、叶面积指数以及由生物量和叶面积2个生理参数构建的长势监测指标(Growth monitoring indicator,GMI)的相关性;建立与GMI相关性较强的4个光谱指数的单指数回归模型,利用多元线性回归、偏最小二乘和随机森林3种机器学习方法分别建立冬小麦各生育期的GMI反演模型;将最佳模型应用于无人机高光谱影像,得到冬小麦长势监测图。结果表明:各生育期光谱指数与冬小麦GMI相关性较高,大部分指数都达到了显著水平,其中NDVI、SR、MSR和NDVI×SR与GMI的相关性高于生物量、叶面积指数与GMI的相关性;拔节期、挑旗期、开花期、灌浆期、全生育期,表现最好的回归模型对应光谱指数分别是NDVI×SR、NDVI、SR、NDVI和NDVI×SR;对比3种方法构建的GMI反演模型,开花期模型MLR-GMI效果最佳,此时期的模型建模R2、RMSE和NRMSE分别是0. 716 4、0. 096 3、15. 90%。 相似文献
14.
15.
为提高大尺度冬小麦产量预测精度,以2005—2019年河南省遥感数据、气象数据、土壤含水率等多源时空数据为特征变量,分析其与小麦单产的相关性,并基于随机森林算法对特征变量进行了重要性分析,构建了融合多源时空数据的冬小麦产量预测模型。结果表明:增强型植被指数(Enhanced vegetation index, EVI)、日光诱导叶绿素荧光(Solar-induced chlorophyll fluorescence, SIF)与高程为小麦产量预测的重要因子,与小麦产量呈高度正相关,对小麦产量预测的重要性指标均超过0.45,远大于土壤含水率、降水量、最高温度、最低温度等因子;基于随机森林算法构建的小麦不同生长阶段产量预测模型中,以10月—次年5月和10月—次年4月为特征变量的产量预测模型精度较高,R2分别为0.85和0.84,RMSE分别为821.55、832.01 kg/hm2,在空间尺度上,豫西和豫南丘陵山地模型预测相对误差高于平原地区。该研究结果可为大尺度作物产量预测提供参考。 相似文献
16.
高寒湿地是青藏高原典型独特的生态系统,是全球气候变化的敏感地带和预警区。利用遥感技术快速、准确地分类提取高寒湿地的土地覆盖信息,对当地生态安全监测和保护具有重要意义。本文以若尔盖湿地国家级自然保护区为研究区,首先,以高分一号(GF-1)遥感影像为数据源,融合光谱特征、水体指数、地形特征、植被指数和纹理信息等26个变量进行随机森林(Random forest,RF)分类实验;然后,根据袋外数据(Out of bag,OOB)的特征变量重要性得分和精度评价结果,选出高寒湿地地区土地覆盖类型的最优分类方案和特征;最后,对特征变量进行降维,并基于相同的变量,采用极大似然法(Maximum likelihood classification,MLC)、支持向量机(Support vector machine,SVM)、人工神经网络(Artificial neural network,ANN)和RF等方法进行分类,比较不同方法的优适性。结果表明:结合GF-1影像光谱、水体、植被、纹理特征和地形信息,使用26个变量的RF模型的分类精度最高,总体精度(Overall accuracy,OA)为90.07%,Kappa系数为0.86;通过RF模型的变量重要性分析可以有效选出重要的特征信息,在降低特征变量维度的同时,还能保证较高的分类精度; 4种分类方法中,RF算法是高寒湿地地区较合适的分类方法,OA比MLC基准方法高17.63个百分点,比SVM和ANN等机器学习算法分别高6.98、6.56个百分点。 相似文献
17.
荒漠草原是草原中最旱生的类型,属于草原的极限生态状态,也是气候变化和生态系统演变的预警区。利用无人机高光谱遥感技术快速、准确地提取荒漠草原草地植被类型,对动态监测草原生态安全和合理开发草地畜牧业具有重要意义。以无人机搭载高光谱成像系统采集内蒙古荒漠草原遥感图像,获得具有高空间分辨率和高光谱分辨率的图像;通过光谱连续统去除变换,增强草地植被之间的光谱差异,并构建植被指数;采用分步波段选择法选择荒漠草原植被的特征波段,实现高光谱数据降维;构建融合光谱特征、植被特征、地形特征和纹理特征等24个变量的随机森林分类模型,并与支持向量机(SVM)、K-最近邻(KNN)和最大似然分类(MLC)法进行比较。结果表明,在4种分类方法中随机森林分类算法分类效果最好,总体分类精度达到91.06%,比SVM、KNN和MLC等机器学习算法分别高7.9、15.61、18.33个百分点,Kappa系数达到0.90,比SVM、KNN和MLC算法分别高0.13、0.23和0.26。无人机高光谱低空遥感和随机森林算法的结合为荒漠草原草地植被分类提供了新途径。 相似文献
18.
种植结构与土壤盐分的协同程度与发展关系关乎灌区水土生态质量与农业可持续发展,联动灌区种植结构提取与土壤盐分空间分析对于灌区生态环境评价与治理、保障耕地和粮食安全等具有重要意义。本文以内蒙古河套灌区永济灌域为研究区,利用2021—2022年生育期Landsat 8 OLI遥感数据与地面种植结构调查数据,分别构建决策树、支持向量机、随机森林分类模型,通过对比分析遴选出灌域适用的最优模型,准确获取灌域种植结构分布结果,同时进一步结合灌域土壤盐分实测数据及其空间异质特征,对种植结构与土壤盐分的协同关系进行深入探讨与分析。结果表明,3种模型的分类精度由大到小为随机森林、决策树、支持向量机,2021、2022年随机森林分类模型的总体精度、Kappa系数分别为92.81%、0.91,91.64%、0.89,为3种模型中精度最高,故选定随机森林模型作为最优模型;灌域内土壤盐分呈现“北部重,中、南部轻”的空间分布特征,2021、2022年土壤盐分的半方差函数适用于Gaussian模型,土壤盐分空间自相关在“中—强”等级变化;受土壤盐分制约,葵花以北部地带种植为主,玉米、小麦、小麦套种玉米(套种)和瓜菜等... 相似文献