共查询到17条相似文献,搜索用时 62 毫秒
1.
反卷积引导的番茄叶部病害识别及病斑分割模型 总被引:3,自引:9,他引:3
针对当前植物叶部病害识别模型易受阴影、遮挡物及光线强度干扰,特征提取具有盲目和不确定性的问题,该研究构建一种基于反卷积引导的VGG网络(Deconvolution-Guided VGGNet,DGVGGNet)模型,同时实现植物叶部病害种类识别与病斑分割。首先使用VGGNet计算多分类交叉熵损失进行病害分类训练,得到病害分类结果;其次设计反向全连接层,将分类结果恢复为特征图形式;然后采用上采样与卷积操作相结合的方法实现反卷积,利用跳跃连接融合多种特征恢复图像细节;最后使用少量病斑监督,对每个像素点使用二分类交叉熵损失进行训练,引导编码器关注真实的病斑部位。试验结果表明,该研究模型的病害种类识别精度达99.19%,病斑分割的像素准确率和平均交并比分别达94.66%和75.36%,在遮挡、弱光等环境下具有良好的鲁棒性。 相似文献
2.
基于迁移学习的棉花叶部病虫害图像识别 总被引:5,自引:10,他引:5
针对传统图像识别方法准确率低、手工提取特征等问题,该研究以棉花叶部病虫害图像为研究对象,利用迁移学习算法并辅以数据增强技术,实现棉花叶部病虫害图像准确分类。首先改进AlexNet模型,利用PlantVillage大数据集训练取得预训练模型,在预训练模型上使用棉花病虫害数据微调参数,得到平均测试准确率为93.50%;然后使用数据增强技术扩充原始数据集,在预训练模型上再训练,得到最终平均测试准确率为97.16%。相同试验条件下,该研究方法较支持向量机(Support Vector Machine,SVM)和BP(Back Propagation,BP)神经网络以及深度卷积模型(VGG-19和Goog Le Net Inceptionv2)分类效果更好。试验结果表明,通过迁移学习能把从源领域(Plant Village数据集)学习到的知识迁移到目标领域(棉花病虫害数据集),数据增强技术能有效缓解过拟合。该研究为农作物病虫害识别技术的发展提供了参考。 相似文献
3.
4.
基于卷积神经网络的田间多簇猕猴桃图像识别方法 总被引:4,自引:17,他引:4
为实现田间条件下快速、准确地识别多簇猕猴桃果实,该文根据猕猴桃的棚架式栽培模式,采用竖直向上获取果实图像的拍摄方式,提出一种基于Le Net卷积神经网络的深度学习模型进行多簇猕猴桃果实图像的识别方法。该文构建的卷积神经网络通过批量归一化方法,以Re LU为激活函数,Max-pooling为下采样方法,并采用Softmax回归分类器,对卷积神经网络结构进行优化。通过对100幅田间多簇猕猴桃图像的识别,试验结果表明:该识别方法对遮挡果实、重叠果实、相邻果实和独立果实的识别率分别为78.97%、83.11%、91.01%和94.78%。通过与5种现有算法进行对比试验,该文算法相对相同环境下的识别方法提高了5.73个百分点,且识别速度达到了0.27 s/个,识别速度较其他算法速度最快。证明了该文算法对田间猕猴桃图像具有较高的识别率和实时性,表明卷积神经网络在田间果实识别方面具有良好的应用前景。 相似文献
5.
基于改进卷积神经网络模型的玉米叶部病害识别(英文稿) 总被引:1,自引:2,他引:1
准确识别玉米病害有助于对病害进行及时有效的防治。针对传统方法对于玉米叶片病害识别精度低和模型泛化能力弱等问题,该研究提出了一种基于改进卷积神经网络模型的玉米叶片病害识别方法。改进后的模型由大小为3×3的卷积层堆栈和Inception模块与ResNet 模块组成的特征融合网络两部分组成,其中3×3卷积层的堆栈用于增加特征映射的区域大小,Inception模块和ResNet 模块的结合用于提取出玉米叶片病害的可区分特征。同时模型通过对批处理大小、学习率和 dropout参数进行优化选择,确定了试验的最佳参数值。试验结果表明,与经典机器学习模型如最近邻节点算法(K- Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)和反向传播神经网络(Back Propagation Neural Networks,BPNN)以及深度学习模型如AlexNet、VGG16、ResNet 和Inception-v3相比,经典机器学习模型的识别率最高为77%,该研究中改进后的卷积神经网络模型的识别率为98.73%,进一步提高了模型的稳定性,为玉米病害检测与识别的进一步研究提供了参考。 相似文献
6.
改进Multi-scale ResNet的蔬菜叶部病害识别 总被引:1,自引:8,他引:1
基于深度网络的蔬菜叶部病害图像识别模型虽然性能显著,但由于存在参数量巨大、训练时间长、存储成本与计算成本过高等问题,仍然难以部署到农业物联网的边缘计算设备、嵌入式设备、移动设备等硬件资源受限的领域。该研究在残差网络(ResNet18)的基础上,提出了改进型的多尺度残差(Multi-scale ResNet)轻量级病害识别模型,通过增加多尺度特征提取模块,改变残差层连接方式,将大卷积核分解,进行群卷积操作,显著减少了模型参数、降低了存储空间和运算开销。结果表明,在PlantVillage和AI Challenge2018中15种病害图像数据集中取得了95.95%的准确率,在自采集的7种真实环境病害图像数据中取得了93.05%的准确率,在准确率较ResNet18下降约3%的情况下,模型的训练参数减少93%,模型总体尺寸缩减35.15%。该研究提出的改进型Multi-scale ResNet使蔬菜叶部病害识别模型具备了在硬件受限的场景下部署和运行的能力,平衡了模型的复杂度和识别精度,为基于深度网络模型的病害识别系统进行边缘部署提供了思路。 相似文献
7.
8.
改进Faster R-CNN的田间苦瓜叶部病害检测 总被引:2,自引:9,他引:2
为实现在自然环境条件下对苦瓜叶部病害的目标检测,该研究提出了一种基于改进的更快速区域卷积神经网络(Faster Region with Convolutional Neural Network Features,Faster R-CNN)的苦瓜叶部病害目标检测方法。Faster R-CNN以残差结构卷积神经网络ResNet-50作为该次试验的特征提取网络,将其所得特征图输入到区域建议网络提取区域建议框,并且结合苦瓜叶部病害尺寸小的特点,对原始的Faster R-CNN进行修改,增加区域建议框的尺寸个数,并在ResNet-50的基础下融入了特征金字塔网络(Feature Pyramid Networks,FPN)。结果表明,该方法训练所得的深度学习网络模型具有良好的鲁棒性,平均精度均值(Mean Average Precision,MAP)值为78.85%;融入特征金字塔网络后,所得模型的平均精度均值为86.39%,提高了7.54%,苦瓜健康叶片、白粉病、灰斑病、蔓枯病、斑点病的平均精确率(Average Precision,AP)分别为89.24%、81.48%、83.31%、88.62%和89.28%,在灰斑病检测精度上比之前可提高了16.56%,每幅图像的检测时间达0.322 s,保证检测的实时性。该方法对复杂的自然环境下的苦瓜叶部病害检测具有较好的鲁棒性和较高的精度,对瓜果类疾病预防有重要的研究意义。 相似文献
9.
基于多路卷积神经网络的大田小麦赤霉病图像识别 总被引:1,自引:7,他引:1
为了准确地识别小麦病害,及时采取防治措施,减少农药施用的成本,同时减少农业生态环境的污染,该研究以灌浆期感染赤霉病的小麦麦穗图像为研究对象,根据病变区域与健康区域的颜色分布特点,设计了一种多路卷积神经网络用于小麦赤霉病图像的识别。首先利用深度语义分割网络U-Net对大田环境下的小麦图像进行分割,去除小麦叶片及其他无关背景的影响,从而分割出麦穗图像。然后设计结构较为简单的多路卷积神经网络分别提取麦穗图像R、G、B 3个通道的特征,通过特征融合获得具有高辨识性的麦穗图像语义特征。最后,为了增大赤霉病和健康麦穗图像特征之间的可区分性,同时减小赤霉病麦穗图像类内特征的差异,采用联合损失函数进一步改善网络的性能。该研究对采集的大田环境下的510幅灌浆期小麦群体图像进行分割,选取2 745幅完整单株麦穗图像利用所设计的多路卷积神经网络进行赤霉病识别试验,结果表明该研究所提算法对单株麦穗赤霉病识别精度达到100%,能够为小麦病害的智能识别提供帮助。 相似文献
10.
番茄器官的实时准确识别是实现自动采摘、靶向施药等自动化生产的关键。该文提出一种基于面向通道分组卷积网络的番茄主要器官实时识别网络模型,该模型直接用特征图预测番茄器官目标边界和类型。以统计可分性、计算速度等为判据,并结合样本扩增训练,分析了该网络和几种典型网络在番茄器官图像处理上的性能,以此筛选出识别网络的基础结构,在基础结构后面分别附加带dropout层的面向通道分组卷积模块和全卷积层作为识别网络的总体架构。试验结果表明:用面向通道分组卷积网络作为识别网络的基础结构,可在显著提高网络召回率、识别速度和精度的前提下,大幅降低模型的大小,该结构网络对花、果、茎识别的平均精度分别为96.52%、97.85%和82.62%,召回率分别为77.39%、69.33%和64.23%,识别速度为62帧/s;与YOLOv2相比,该文识别网络召回率提高了14.03个百分点,精度提高了2.51个百分点。 相似文献
11.
基于改进卷积神经网络的多种植物叶片病害识别 总被引:13,自引:23,他引:13
针对训练收敛时间长,模型参数庞大的问题,该文将传统的卷积神经网络模型进行改进,提出一种批归一化与全局池化相结合的卷积神经网络识别模型.通过对卷积层的输入数据进行批归一化处理,以便加速网络收敛.进一步缩减特征图数目,并采用全局池化的方法减少特征数.通过设置不同尺寸的初始层卷积核和全局池化层类型,以及设置不同初始化类型和激活函数,得到8种改进模型,用于训练识别14种不同植物共26类病害并选出最优模型.改进后最优模型收敛时间小于传统卷积神经网络模型,仅经过3次训练迭代,就能达到90%以上的识别准确率;参数内存需求仅为2.6 MB,平均测试识别准确率达到99.56%,查全率和查准率的加权平均分数为99.41%.改进模型受叶片的空间位置的变换影响较小,能识别多种植物叶片的不同病害.该模型具有较高的识别准确率及较强的鲁棒性,该研究可为植物叶片病害的识别提供参考. 相似文献
12.
精确、快速地获取作物和杂草的类别信息是实现自动化除草作业的重要前提。为解决复杂环境下农作物田间杂草种类的高效准确识别问题,该研究提出一种基于改进DenseNet的杂草识别模型。首先,在DenseNet-121网络的基础上,通过在每个卷积层后引入ECA(Efficient Channel Attention)注意力机制,增加重要特征的权重,强化杂草特征并抑制背景特征;其次,通过DropBlock正则化随机隐藏杂草图像部分特征块,以提升模型的泛化能力,增强模型识别不同类型杂草的适应性;最后,以自然环境下玉米幼苗和6类伴生杂草作为样本,在相同试验条件下与VGG-16、ResNet-50和未改进的DenseNet-121模型进行对比试验。结果表明,改进的DenseNet模型性能最优,模型大小为26.55 MB,单张图像耗时0.23 s,平均识别准确率达到98.63%,较改进前模型的平均识别准确率提高了2.09%,且综合性能显著高于VGG-16、ResNet-50模型;同时,通过采用CAM(Class Activation Mapping)可视化热度图方法分析,得出改进前后模型的类别判断概率分别为0.68和0.98,本文模型明显高于未改进模型,进一步验证了改进模型的有效性。该模型能够很好地解决复杂环境下农作物和杂草的种类精准识别问题,为智能除草机器人开发奠定了坚实的技术基础。 相似文献
13.
如何解决运动中肉牛关键部位自动识别,是实现肉牛异常行为早期发现的关键。该文通过Kinect采集肉牛图像的2种模态(Depth和RGB):基于RGB模态提出随机最近邻像素比较法,实现肉牛动作样本的自动抓取;基于Depth模态提出深度均值法,实现彩色图像背景过滤并保留肉牛形体信息,生成DRGB图像样本;基于Fast R-CNN设计识别器,参考Alex Net设计了8种分类网络并比较网络分类精度,选择最优网络作为识别器的基础网络;输入DRGB样本对网络的识别部分二次训练,最终得到符合精度要求的识别器。试验证明,RNNPC的有效数据率为94%;Selective Search算法在DRGB上产生的候选区域数量减少90%;识别网络的平均分类精度可以达到75.88%,处理图像速率为4.32帧/s,效果优于原Fast RCNN,基本可以实现运动中肉牛形体部位识别。 相似文献
14.
基于卷积神经网络的温室黄瓜病害识别系统 总被引:11,自引:14,他引:11
基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及其检测方法,通过将该颜色特征与传统区域生长算法结合,实现了温室黄瓜病斑图像的准确分割。基于温室黄瓜病斑图像,构建了温室黄瓜病害识别分类器的输入数据集,并采用数据增强方法将输入数据集的数据量扩充了12倍。基于扩充后的数据集,构建了基于卷积神经网络的病害识别分类器并利用梯度下降算法进行模型训练、验证与测试。系统试验结果表明,针对含有光照不均匀和复杂背景等噪声的黄瓜病害图像,该系统能够快速、准确的实现温室黄瓜病斑图像分割,分割准确率为97.29%;基于分割后的温室黄瓜病斑图像,该系统能够实现准确的病害识别,识别准确率为95.7%,其中,霜霉病识别准确率为93.1%,白粉病识别准确率为98.4%。 相似文献
15.
基于深度卷积神经网络的番茄主要器官分类识别方法 总被引:3,自引:14,他引:3
为实现番茄不同器官的快速、准确检测,提出一种基于深度卷积神经网络的番茄主要器官分类识别方法。在VGGNet基础上,通过结构优化调整,构建了10种番茄器官分类网络模型,在番茄器官图像数据集上,应用多种数据增广技术对网络进行训练,测试结果表明各网络的分类错误率均低于6.392%。综合考虑分类性能和速度,优选出一种8层网络用于番茄主要器官特征提取与表达。用筛选出的8层网络作为基本结构,设计了一种番茄主要器官检测器,结合Selective Search算法生成番茄器官候选检测区域。通过对番茄植株图像进行检测识别,试验结果表明,该检测器对果、花、茎的检测平均精度分别为81.64%、84.48%和53.94%,能够同时对不同成熟度的果和不同花龄的花进行有效识别,且在检测速度和精度上优于R-CNN和Fast R-CNN。 相似文献
16.
改进Faster R-CNN的群养猪只圈内位置识别与应用 总被引:1,自引:3,他引:1
群养圈栏内猪只的位置分布是反映其健康福利的重要指标。为解决传统人工观察方式存在的人力耗费大、观察时间长和主观性强等问题,实现群养猪只圈内位置的高效准确获取,该研究以三原色(Red Green Blue,RGB)图像为数据源,提出了改进的快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)的群养猪只圈内位置识别算法,将时间序列引入候选框区域算法,设计Faster R-CNN和轻量化CNN网络的混合体,将残差网络(Residual Network,ResNet)作为特征提取卷积层,引入PNPoly算法判断猪只在圈内的所处区域。对育成和育肥2个饲养阶段的3个猪圈进行24 h连续98 d的视频录像,从中随机提取图像25 000张作为训练集、验证集和测试集,经测试该算法识别准确率可达96.7%,识别速度为每帧0.064s。通过该算法获得了不同猪圈和日龄的猪群位置分布热力图、分布比例和昼夜节律,猪圈饲养面积的增加可使猪群在实体地面的分布比例显著提高(P<0.05)。该方法可为猪只群体行为实时监测提供技术参考。 相似文献