共查询到17条相似文献,搜索用时 62 毫秒
1.
基于无人机可见光影像的农田作物分类方法比较 总被引:4,自引:4,他引:4
大面积农田种植信息的准确获取是精准农业的基础。色彩空间转换、纹理分析和颜色指数等方法能够有效的增强和挖掘影像潜在的信息,对影像分类很有帮助,该文利用2016年9月获取的无人机影像对新疆兵团第八师149团的部分农田进行了作物类型的提取研究。首先对影像进行了色彩空间转换和灰度共生矩阵纹理滤波,得到了27项色彩与纹理特征,通过比较变异系数和差异系数认为亮度、饱和度和红色二阶矩可以作为最优分类特征。其次计算影像的过绿指数(excess green index,EXG)和可见光波段差异植被指数(visible-band difference vegetation index,VDVI),通过阈值对比确定了EXG指数可以有效的区分不同作物类型。最后对比以上2种方法计算得到的分类结果,表明基于色彩与纹理特征提取的作物类型的精度较高,将该方法应用于棉花、玉米和葡萄的分类,误差值分别为7.2%、4.75%和2.37%,明显高于基于颜色指数的提取方法,是一种行之有效的无人机数据作物分类方法。该研究虽未对更大区域做进一步探讨,但可为无人机应用于农田作物分类提供参考。 相似文献
2.
基于无人机遥感可见光影像的北疆主要农作物分类方法 总被引:5,自引:10,他引:5
作物类型准确分类是大田作业和管理的基础。该文通过无人机遥感试验获取的可见光影像,利用色彩空间转换和纹理滤波构建了色调、饱和度和亮度的27项纹理和低通滤波特征;然后采用Relief F-Pearson特征降维方法,剔除分类能力弱且相关性高的冗余特征;最后,基于优选特征训练分类模型,并结合人工分类结果对各模型进行精度比较和效果验证。结果表明:特征选择得到的H-CLP、H-Ent、I-Cor、I-CLP、I-Ent、S-CLP和I-Var是利用可见光影像进行北疆主要农作物分类的最佳特征,可在充分表征影像特征的同时降低数据冗余。支持向量机(support vector machine,SVM)分类方法精度最高,整体分类准确率达83.77%,ANN和KNN分类精度次之。通过在验证区进行像素级别作物分类,发现SVM分类方法效果最好,棉花、玉米、苜蓿和西葫芦作物分类精度均达到了80%以上。该研究可为基于无人机可见光影像的农作物种植信息普查提供参考。 相似文献
3.
基于无人机多光谱影像的完熟期玉米倒伏面积提取 总被引:2,自引:3,他引:2
由于土壤、地形、水分以及耕作方式等存在的时空变异性,致使灾后完熟期玉米地块存在4类作物形态,包括叶片呈绿色的未倒伏玉米、叶片淡黄的未倒伏玉米、叶片淡黄的倒伏玉米、黑色阴影区域。为进一步提高现有倒伏玉米面积提取方法的精度,该文以黑龙江省国营农场典型玉米倒伏地块为研究区,获取无人机多光谱数据,对比4类作物形态的光谱、植被指数以及纹理特征差异,经特征筛选后,首先面向倒伏玉米提取构建了5种典型特征组合。然后针对植被指数特征、光谱和纹理特征组合采用最大似然法分类,最后对提取结果的精度进行评价和分析。结果表明:反射光谱特征或植被指数特征无法准确区分4类作物形态,提取的倒伏玉米面积偏差较大;多类纹理特征法所得结果最优,4类典型作物形态的识别平均误差为9.82%,倒伏面积提取的误差为3.40%,Kappa系数为0.84。该研究延展了纹理特征在倒伏玉米面积提取中的应用并对完熟期倒伏玉米识别具有重要的借鉴意义。 相似文献
4.
为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍 "红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)共5种监督分类算法及不同特征组合的分类效果,以实现玉米种植信息的高精度提取。结果表明,使用单一种类特征或使用全部3种特征均不能获得最优的分类精度;将植被指数与HSI色彩特征或与纹理特征进行组合获得的总体分类精度(5种算法平均值)比仅使用植被指数获得的总体分类精度分别提高了4.2%和8.3%;在所有特征组合中,HSI色彩特征和纹理特征组合为最优选择,基于该特征空间的RF算法获得了最高的分类精度,总精度为86.2%,Kappa系数为0.793;基于RF算法进行降维并不能显著提高或降低分类精度(SVM除外),但所保留的特征因子可给出符合实际背景和意义的解释,并可提高分类结果的稳定性。研究结果可为基于无人机RGB影像的作物种植信息高精度提取提供方法参考。 相似文献
5.
利用不同时期HJ-1 A/B-CCD影像提取湖北省冬小麦和油菜分布信息.计算冬小麦、油菜不同生长期的NDVI曲线,通过野外调查和测量,获取冬小麦、油菜和其它典型地物的光谱特征.确定CCD影像提取冬小麦和油菜信息的最佳时相及不同地物在CCD影像上的色彩特征.采取最大似然分类法,对CCD影像进行分类,提取冬小麦、油菜分布信息.结果表明,HJ-1 A/B-CCD影像提取精度达95.48%,可以用于提取冬小麦、油菜分布信息;对于湖北省而言,3月中、下旬(冬小麦拔节、油菜开花)是HJ卫星提取冬小麦、油菜信息的最佳时相;在最佳时相内,冬小麦和油菜具有不同的光谱特征和CCD影像色彩特点,且样本分布服从近似正态分布,可以用最大似然方法提取其信息. 相似文献
6.
无人机遥感影像面向对象分类方法估算市域水稻面积 总被引:2,自引:5,他引:2
针对如何高效地从无人机遥感影像中提取农作物样方数据,用于农作物面积遥感估算,该文以浙江省平湖市为例,利用面向对象分类方法对无人机影像进行水稻自动化识别,作为样方数据与卫星遥感全覆盖空间分布分类结果结合,采用分层联合比估计进行2014年单季晚稻面积估算。然后,与人工目视解译识别方法获取的水稻样方数据推断的区域水稻面积估算的结果进行精度、效率对比分析。研究结果表明:1)利用面向对象分类方法对无人机影像进行分类,总体分类精度达到93%以上,满足构建样本的要求;2)通过区域作物估算对比分析发现,面向对象分类方法对无人机影像进行水稻识别,构建平湖市单季晚稻的样方数据,能够替代人工目视解译样方准确推断区域作物种植面积,有效地提高了无人机影像在遥感面积估算中的应用效率。 相似文献
7.
8.
基于小型无人机遥感的玉米倒伏面积提取 总被引:8,自引:10,他引:8
该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著低于基于色彩特征提取方法的。该研究结果为应用无人机彩色遥感图像准确提取倒伏玉米面积提供了依据和方法。 相似文献
9.
基于无人机可见光影像与OBIA-RF算法的城市不透水面提取 总被引:2,自引:0,他引:2
不透水面是一种重要的城市地物类型,及时准确地获取城市不透水面信息对城市的合理规划、生态环境保护及可持续发展具有重要意义。低空无人机(Unmanned Aerial Vehicle,UAV)作为新型的遥感平台,具有操作灵活、时空分辨率高、受云雾影响小等优点,为中小尺度城市不透水面遥感监测提供了新的技术手段。以无人机可见光影像作为数据源,通过使用面向对象与随机森林算法相结合的方法开展对城市不透水面信息提取研究。首先,根据最佳尺度对影像进行分割并提取分割对象的不同特征,以光谱特征为基础,分别引入指数与地形特征建立方案S1~S4,以光谱、指数和地形特征为基础,分别加入纹理与几何特征构建方案S5~S7,以此来分析不同类型特征对不透水面提取效果的影响;同时,基于优选特征子集(13个)构建方案S8,基于上述8种方案,利用随机森林(Random Forest,RF)算法进行分类并确定最佳方案。然后,通过比较随机森林、支持向量机(Support Vector Machine,SVM)和 K-最邻近法(K-Nearest Neighbors,KNN)算法在最佳方案的特征子集下的分类效果,评价随机森林算法对于不透水面的分类性能。结果表明:地形特征中的归一化数字表面模型(normalized Digital Surface Model,nDSM)对不透水面提取精度的提升作用最大,多个方案通过引入nDSM后分类精度均有较大幅度的提升(22.49~39.67个百分点);基于特征优选子集的S8方案分类精度最高,其总体精度达96.18%,Kappa系数为0.95,可见特征优选能够将高维度特征进行降维和优化,大幅减少特征数的同时还能一定程度提高分类效果;随机森林算法在最优特征子集下的分类效果优于SVM与KNN,总体精度比二者分别提升了1.35和14.18个百分点。可见面向对象和随机森林相结合的方法可有效开展城市不透水面精细化提取。该研究为基于无人机可见光影像的不透水面提取提供了一种新方法,也可为城市其他类别地物监测提供技术参考。 相似文献
10.
基于裸土期多时相遥感影像特征及最大似然法的土壤分类 总被引:1,自引:5,他引:1
运用单时相遥感数据进行土壤分类及制图,其数据本身易受到其他因素干扰而出现误差,存在一定的局限性,导致制图精度不高。为了提高制图精度,以松嫩平原林甸县为研究区,利用裸土时期多时相Landsat 8遥感影像、DEM数据和全国第二次土壤普查数据,从所有单时相遥感影像中提取出多种分类特征,按照分类特征类型进行压缩处理,得到新的多时相分类特征,将不同分类特征进行组合并分别进行最大似然法分类,得到不同分类特征组合下的土壤类型图,通过不同土壤类型图精度来判断各分类特征对于制图的影响。研究表明,该文所提取的分类特征均可以实现土壤制图,使用压缩处理后得到的多时相遥感数据分类特征完成制图的精度更高,总体精度达到91.0%,研究可为土壤精细制图提供依据。 相似文献
11.
基于无人机数码影像的玉米育种材料株高和LAI监测 总被引:3,自引:7,他引:3
快速、无损和高通量地获取田间株高(height,H)和叶面积指数(leaf area index,LAI)表型信息,对玉米育种材料的长势监测及产量预测具有重要的意义。基于无人机(unmanned aerial vehicle,UAV)遥感平台搭载高清数码相机构建低成本的遥感数据获取系统,于2017年5—9月在北京市昌平区小汤山镇国家精准农业研究示范基地的玉米育种材料试验田,获取试验田苗期、拔节期、喇叭口期和抽雄吐丝期的高清数码影像和地面实测的H、LAI和地面控制点(ground control point,GCP)的三维空间坐标。首先,基于高清数码影像结合GCP生成试验田的数字表面模型(digital surface model,DSM)和高清数码正射影像(digital orthophoto map,DOM);然后,基于DSM和DOM分别提取玉米育种材料的H和数码影像变量,其中将DOM的红、绿和蓝通道的DN(digital number)值分别定义为R、G和B,进行归一化后得到数码影像变量,分别定义为r、g和b;最后,基于实测H对DSM提取的H进行了精度验证,并用逐步回归分析方法进行了LAI的估测。结果表明,实测H和DSM提取的H高度拟合(R~2、RMSE和n RMSE分别为0.93,28.69 cm和17.90%);仅用数码影像变量估测LAI,得到最优的估测变量为r和r/b,其估算模型和验证模型的R~2、RMSE和n RMSE分别为0.63,0.40,26.47%和0.68,0.38,25.51%;将H与数码影像变量进行融合估测LAI,得到最优的估测变量为H、g和g/b,其估算模型和验证模型的R~2、RMSE和n RMSE分别为0.69,0.37,24.34%和0.73,0.35,23.49%。研究表明,基于无人机高清数码影像结合GCP生成DSM,提取玉米育种材料的H,精度较高;将H与数码影像变量进行融合估测LAI,与仅用数码影像变量相比,估测模型和验证模型的精度明显提高。该研究可为玉米育种材料的田间表型信息监测提供参考。 相似文献
12.
为解决目前苗木计数由人工完成而导致的成本高,效率低,计数精度不能得到保障的问题,该研究以自然环境下的云杉为研究对象,以无人机航拍云杉图像和拼接后完整地块云杉图像为数据源,根据云杉尺寸差异大和训练样本小的特点提出一种基于改进YOLOv3模型的云杉计数模型。该模型将密集连接模块和过渡模块引入特征提取过程,形成Darknet-61-Dense特征提取网络。通过694幅无人机航拍云杉图像测试表明,密集连接模块和过渡模块可解决YOLOv3模型小样本训练过拟合问题和云杉特征丢失问题,改进YOLOv3模型可以快速准确实现云杉计数,在精确率P、召回率R、平均精度AP、平均计数准确率MCA和平均检测时间ADT这5个评价指标上达到96.81%、93.53%、94.26%、98.49%和0.351 s;对比原有YOLOv3模型、SSD模型和Faster R-CNN模型,精确率P分别高2.44、4.13和0.84个百分点。对于拼接后完整地块云杉图像,改进YOLOv3模型的5个评价指标的结果分别为91.48%、89.46%、89.27%、93.38%和1.847 s;对比原有YOLOv3模型、SSD模型和Faster R-CNN模型,精确率P分别高2.54、9.33和0.74个百分点。该研究为利用无人机快速准确统计苗木数量的关键步骤做出有益的探索。 相似文献
13.
精准监测农田土壤含水率(soil moisture content,SMC)有助于提高中国水资源利用率以及农业可持续发展水平,为实现国家农业经济的稳定发展及可持续发展目标打下坚实的基础。为了探索基于无人机遥感数据进行准确、快速的土壤含水率监测的方法,该研究选取新疆阜康绿洲田块为研究区,使用无人机(unmanned aerial vehicle,UAV)高光谱传感器采集田块尺度小麦冠层光谱信息,进行SMC定量估算和制图。对小麦冠层光谱进行savitzky-golay(SG)平滑,利用7种不同的小波基函数(bior4.4、coif4、db4、fk14、haar、rbio3.9、sym4)对光谱信息进行连续小波变换(continuous wavelet transform,CWT)处理,并采用遗传算法(genetic algorithm, GA)对小波系数进行特征提取,最后结合偏最小二乘回归(partial least square regress,PLSR)、支持向量机(support vector machine,SVM)、人工神经网络(artificial neural network,ANN)、随机森林(radom forest,RF)以及极端梯度提升(extreme gradient boosting,XGBoost)估算SMC并实现其空间制图。结果表明:基于GA的特征波段选择方法可有效提高SMC的估算精度。使用全波段小波系数构建模型的精度R2在0.20~0.44之间,而使用特征小波系数的R2为0.25~0.82。与其他小波基函数相比,采用db4特征小波系数的估算精度最优,PLSR、SVM、ANN、RF和XGBoost模型估算SMC的R2分别为0.82、0.72、0.79、0.76和0.45。基于PLSR和ANN最优模型进行SMC空间制图,结果表明基于CWT和机器学习结合模型能够有效估算小田块尺度SMC。该研究基于无人机高光谱数据实现了SMC精确估算,为农田尺度SMC监测提供了有效手段。 相似文献
14.
基于无人机低空遥感的农作物快速分类方法 总被引:10,自引:9,他引:10
无人机以其高时效、高分辨率、低成本、低风险及可重复使用的优势,给遥感技术在各领域的应用提供了新的平台。为了提高无人机遥感中农田信息获取的时效性和精度,该文分析了无人机低空航飞获得的高空间分辨率农作物遥感影像特征,以冬小麦为研究对象,基于农作物波谱特征和NDVI变化阈值,提出了一种农作物快速分类提取方法,并与其他几种常用的遥感分类方法进行比较,探讨了其普适性。结果表明,该方法从无人机高分辨率影像中提取不同种类的农作物分类信息具有较高的正确率和普适性,兼具快速和低成本的特点,在海量农作物无人机航拍数据的信息提取上具有较广的应用。 相似文献
15.
16.
在天然林、混交林、复层林等复杂林分条件下,可见光森林影像受林分郁闭度、冠层结构、摄影季节等影响较大,对其进行树冠提取时,现有方法无法保证精度且缺乏有效的人工介入机制。该研究探索了一种能够在低郁闭度时自动分割,高郁闭度时可适当人工介入的树冠分割方法。先将无人机可见光森林影像处理成数字地表模型(Digital Surface Model,DSM)、数字高程模型(Digital Elevation Model,DEM)和数字正射影像图(Digital Orthophoto Map,DOM),DSM与DEM相减得到树冠高模型(Canopy Height Model,CHM),利用局部最大值法从CHM提取树顶点的平面位置生成泰森多边形,并以其外接矩形为基础生成树冠范围矩形,遍历并切分出单株立木树冠范围影像,进行各向异性扩散滤波后,通过水平集方法演化出树冠边界曲线。利用C#语言在ArcGIS Engine上实现基于水平集模型的可嵌入ArcMap运行的树冠分割插件。利用该插件对选自内蒙古大兴安岭大杨树林业局乃木河林场的不同郁闭度、不同树种组成的9块50 m×50 m天然混交林标准地的DOM影像进行树冠提取试验,同时与手工提取法和SVM图像分割法进行对比分析。结果表明本文方法的提取速度比手工提取法平均提高了45.97%;提取精度比SVM图像分割法平均提高了15.29个百分点。该方法在郁闭度低冠幅大时强调效率,在郁闭度高冠幅小时保证精度,是一种可伸缩性和通用性强的方法。 相似文献
17.
基于无人机影像的可见光波段植被信息识别 总被引:4,自引:0,他引:4
该文通过对6种典型地物在无人机影像可见光波段的光谱特性分析,提出一种基于红、绿、蓝波段的可见光植被指数—超绿红蓝差分指数EGRBDI(excess green-red-blue difference index),并运用该植被指数与18种基于可见光波段的植被指数进行精度比较研究。研究表明,在利用均值和1倍标准差获得的区间范围内,EGRBDI各地类之间的信息无重叠交叉现象;该指数能对植被覆盖相对稀疏区域进行植被信息识别,其总体精度为97.67%,Kappa系数为0.9415,较其他18种指数具有更好的植被信息识别能力。利用不同地物覆盖情况的3幅无人机影像作为数据源,对EGRBDI适用性和稳定性进行研究,结果表明,在3个研究区中,基于EGRBDI的植被信息识别总精度均高于93%,Kappa系数均大于0.85,提取精度受地物类型差异影响的波动性较小,能较好地削弱影像中阴影等因素的影响,具有较好的适用性、可靠性和提取精度。 相似文献