首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This is the first study describing the fine structure of the main, individual fructan oligosaccharides present in wheat grains. Wheat grain fructan structure was investigated in developing wheat grains and in different tissues of mature grains with liquid chromatography-mass spectrometry. Fructan oligosaccharides with a low degree of polymerization (<5) were mainly of the graminan- and inulin-type in developing wheat grains during the first week after anthesis. Starting from 14 days after anthesis, neo-type fructans, fructans with an internal glucose, were observed for the first time. Several neo-type fructan structures were identified and their portion in the total fructan pool gradually increased during grain development. In the mature kernel, almost no differences were noted between the fructan distributions of wheat flour and two wheat bran fractions enriched in either pericarp or aleurone tissue. Results are related to wheat fructan metabolizing enzymes and the nutritional implications are discussed.  相似文献   

3.
Warmer temperatures and increasing interest in high provenance food and drink products are creating new opportunities for cereal growing in northern Europe. Nevertheless, cultivation of oats and barley in these areas for malting and milling remains a challenge, primarily because of the weather, and there are few reports of their nutritional content from this region. In this study, trials in Orkney compared agronomic characteristics and nutritional content of recommended UK oat and barley varieties with Scandinavian varieties over three years. For a subset of varieties, nutritional content was compared with samples cultivated in more southerly sites. For Orkney, barley was considered a more suitable crop than oats because varieties matured earlier. In both crops, Scandinavian varieties matured earlier than UK varieties and some produced comparable yields. The range of values for macronutrients and minerals in oats and barley in Orkney were similar to those reported previously for other locations, but there were some significant differences attributable to variety and year. Compared with grain samples from more southerly locations, oats in Orkney had a significantly lower β-glucan and higher sodium content. The lower β-glucan may have resulted from higher rainfall and lower temperatures during the months of grain filling and maturation.  相似文献   

4.
In response to customer concerns related to gluten strength in commercial baking, the Canadian Grain Commission assessed whether the Canadian Short Process (CSP) test bake method was generating useful data related to intrinsic strength of wheat varieties. Assessment of CSP loaf volume data for Canadian variety trials spanning 2003 to 2013 showed very little correlation with dough strength parameters as measured by farinograph and extensigraph. A lean no time (LNT) test baking method was developed that can better discriminate genotypes and provide objective indicators of the effect of intrinsic dough strength on baking quality. From early method development, through method validation and verification using diverse sets of samples targeting different Canadian wheat classes and grown in three different crop years, results showed the LNT method to be more discriminating and easily adopted by other laboratories. In 2015, the LNT method was adopted as the method of choice in future Canadian variety registration trials. The LNT method is fast, simple and well-suited to high throughput test baking conditions encountered in the evaluation of large numbers of breeder lines. A new objective parameter, loaf top ratio, was also introduced and found to correlate well with dough strength and dough handling properties.  相似文献   

5.
The genotype, environment and their interaction play an important role in the grain yielding and grain quality attributes. The main aim of this study was to determine the contributions of the genotype, environment and their interaction to the variation in bread-making traits. The data that were used for the analyses performed in this study were obtained from 3 locations in Poland from post-registration multi-environment trials with winter wheat in 2009 and 2010. The experimental factors were the cultivar (7 cultivars) and the crop management level (low input and high input). In the multi-environment trials, 17 traits were investigated that characterize grain, flour and dough quality. Most of the traits were affected much more strongly by environmental factors (i.e., year and location) than by genotype. The variance components revealed an especially strong effect of the year on the baking score, loaf volume and water absorption, as well a strong effect of the location on dough development and protein content. The obtained results demonstrate that the grain quality as measured by the parameters based on the protein content and quality may be substantially improved by crop management practices, especially by N fertilization level.  相似文献   

6.
In response to customer concerns related to gluten strength in commercial baking, the Canadian Grain Commission assessed whether the Canadian Short Process (CSP) test bake method was generating useful data related to intrinsic strength of wheat varieties. Assessment of CSP loaf volume data for Canadian variety trials spanning 2003 to 2013 showed very little correlation with dough strength parameters as measured by farinograph and extensigraph. A lean no time (LNT) test baking method was developed that can better discriminate genotypes and provide objective indicators of the effect of intrinsic dough strength on baking quality. From early method development, through method validation and verification using diverse sets of samples targeting different Canadian wheat classes and grown in three different crop years, results showed the LNT method to be more discriminating and easily adopted by other laboratories. In 2015, the LNT method was adopted as the method of choice in future Canadian variety registration trials. The LNT method is fast, simple and well-suited to high throughput test baking conditions encountered in the evaluation of large numbers of breeder lines. A new objective parameter, loaf top ratio, was also introduced and found to correlate well with dough strength and dough handling properties.  相似文献   

7.
Grain physical characteristics and milling behavior of a durum wheat line in which both wild-type puroindoline genes were translocated and stabilized after backcrossing (Svevo-Pin) were compared with the parent line (Svevo). The only observed differences between grain characteristics were the mechanical resistance and starchy endosperm porosity revealed through vitreosity measurement. A significant increase of flour and a decrease of semolina yield and break milling energy were observed from Svevo-Pin in comparison with the non-recombinant parent line in accordance to the lower grain mechanical resistance and higher porosity measurements. Moreover, the particle size distribution shown for Svevo-Pin flour appeared consistent with a lower adhesion between starch granules and the protein matrix attributed to the presence of wild-type puroindolines. Coarse bran yield was conversely increased. This appeared to be due to a lower starchy endosperm recovery as a higher proportion of grain starch was found in this bran fraction. Flour from the durum parent line was inversely enriched in phytic acid, a cellular marker of the aleurone layer. Starch damage was also lower in Svevo-Pin flours in comparison with Svevo. All of the observed differences between translocation and parent lines were confirmed independent of the culture growth conditions (n = 12).  相似文献   

8.
9.
The identification of “stay-green” in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate “stay-green”-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of “stay-green” expression on grain quality under extreme physiological stress is limited. This study examines impacts of “stay-green”-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without “stay-green”-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the “stay-green”-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with “stay-green”-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the “stay-green”-like traits potentially useful in ensuring food security.  相似文献   

10.
The role of gluten proteins during lamination and fermentation of multi-layered wheat flour pastry dough was examined by including oxidizing or reducing agents in the recipe to respectively strengthen or weaken the gluten protein network. Pastry burst rig textural measurements showed that dough strength increases during lamination up to 16 fat layers. However, further lamination up to 64 and 128 fat layers decreases the dough strength, most likely due to destruction of layer integrity. Redox agents strongly affect dough strength. Furthermore, fermentation and spread tests showed that they strongly influence elastic recoil immediately after lamination and during relaxation. Moreover, elastic recoil consistently occurs to a greater extent in the final direction of sheeting. None of the observed changes in dough strength and relaxation behaviour could be linked to changes in the levels of protein extractable in sodium dodecyl sulfate containing medium (SDS-EP). This suggests that changes occur preferentially either within the SDS-extractable or within the non-SDS-EP fraction and that they do not render non-extractable protein fractions extractable or vice versa. Furthermore, elastic recoil is most likely caused by reformation of inter- and intramolecular hydrogen bonds and hydrophobic interactions.  相似文献   

11.
Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.  相似文献   

12.
The aims of this study were to assess the linear relationships between agronomic and nutritional traits and identify promising traits for indirect selection in transgenic genotypes of maize. Eighteen transgenic maize genotypes were assessed in randomized blocks with three replications. The agronomic (number of days from sowing until male flowering, number of days from sowing until female flowering, plant height, ear insertion height and grain yield) and nutritional (crude protein, ether extract, crude fiber, starch and amylose) traits were measured. Analysis of variance was run for each of the 10 traits and phenotypic and genotypic correlation coefficient matrices estimated. Ridge path analysis were performed the nutritional traits were treated as main variable (dependent) and agronomic traits as explanatory variables (independents). The number of days from sowing until female flowering has a positive linear relationship to crude protein, ether extract and starch. Plant height has a positive linear relationship to crude fiber. Ear height has a positive linear relationship to amylose. Grain yield has a positive linear relationship to starch. The number of days from sowing until male flowering, plant height, ear height and grain yield can be used indirect selection in maize.  相似文献   

13.
Wheat flour is generally supplemented with α-amylases to increase maltose levels in bread dough and increase loaf volume. While the preference of yeast for glucose and fructose over maltose as substrate for fermentation is well documented, the impact of maltose versus glucose producing enzymes on bread dough fermentation kinetics and bread sugar levels is ill documented. Hence the impact of α-amylase, α-glucosidase and glucoamylase action on both aspects was investigated. Glucoamylase and α-amylase increase the total fermentable sugar content of dough, while α-glucosidase only affects the glucose/maltose ratio. Due to their effect on total fermentable sugar levels, addition of α-amylase or glucoamylase prolongs the total productive fermentation time, while this is not the case for α-glucosidase. In contrast to α-amylase, both glucoamylase and α-glucosidase supplementation leads to higher CO2 production rates during the initial stages of fermentation. In the final bread product, different sugar levels are observed depending on the dosage and type of starch-degrading enzyme. The results of this study imply that long and short fermentation processes benefit from α-amylase and α-glucosidase addition, respectively, while glucoamylase supplementation is suitable for both long and short fermentation times.  相似文献   

14.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

15.
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76%) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43% (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6% (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74%), with environment (E) responsible for 5–14%. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.  相似文献   

16.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

17.
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the devastating diseases of small grain crops, including barley and wheat. Breeding for resistance is one of the best and ecofriendly strategies to manage the FHB. However, the existing methods used for screening genotypes, both under field and greenhouse conditions, often resulted in high experimental error, leading to inconsistent ranking of genotypes over years. In the postgenomic era, precise assessment of resistance is crucial to identify candidate genes. Here, we report a pathogen inoculation procedure and a real-time quantitative polymerase chain reaction (qPCR) based protocol for the quantification and discrimination of quantitative resistance among barley and wheat genotypes to FHB. Using Fusarium specific primer pair Tri6_10, for the trichothecene biosynthetic cluster (Tri6) gene, we successfully quantified the relative fungal biomass in both spikelets and rachis. A qPCR of spikelets and rachis collected on 6 dpi, from inoculated three alternate spikelet regions, discriminated resistance with less experimental error than those based on the proportion of spikelets diseased (PSD) at 9 dpi. This method can be applied for medium to high-throughput barley and wheat breeding programmes to discriminate quantitative resistance among genotypes against FHB.  相似文献   

18.
Glutamine synthetase (GS) plays a central role in plant nitrogen (N) metabolism, which improves crops grain protein content. A pot experiment in field condition was carried out to evaluate GS expression and activity, and grain protein content in high (Wanmai16) and low grain protein (Loumai24) wheat cultivars under two N levels (0.05 and 0.15 g N kg−1 soil). High nitrogen (HN) resulted in significant increases in GS1 and GS2 expression at 10 days after anthesis (DAA), and higher GS activity during the entire grain filling stage. HN also significantly increased yield, grain protein content and protein fraction (except for glutenin of Luomai24) in two wheat cultivars, which indicated that it increased grain yield and protein content by improving nitrogen metabolism. Wanmai16 showed higher grain protein content, gliadin and glutenin content, and had higher expression level of GS2 both in flag leaves and grains at early grain filling stage. However, Luomai24 had greater yield and higher expression level of GS1. The difference expression of GS2 and GS1 genes indicates they had various contributions to the accumulation of protein and starch in wheat grains, respectively. The results suggest that GS2 would be serving as a potential breeding target for improving wheat quality.  相似文献   

19.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   

20.
Wheat gluten was isolated in a laboratory dough-batter flour separation process in the presence or absence of lipases differing in hydrolysis specificity. The obtained gluten was blended with wheat starch to obtain gluten-starch (GS) blends of which the water and oil binding capacities were investigated. Furthermore, GS blends were mixed into dough and processed into model breads, of which dough extensibility and loaf volume were measured, respectively. In comparison to GS blends prepared with control gluten, oil binding capacity was higher when GS blends contained gluten isolated with Lecitase Ultra (at 5.0 mg enzyme protein/kg flour), a lipase hydrolyzing both non-polar and polar lipids. Additionally, dough extensibility and total work needed for fracture were lower for dough prepared from GS blends containing gluten isolated with Lipolase (at 5.0 mg enzyme protein/kg flour), a lipase selectively degrading non-polar lipids. In GS blend bread making, this resulted in inferior loaf volumes. Comparable GS blend properties were measured when using control gluten and gluten isolated with YieldMAX, a lipase mainly degrading N-acyl phosphatidylethanolamine. In conclusion, properties of GS blend model systems are altered when gluten prepared in the presence of lipases is used to a degree which depends on lipase specificity and concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号