首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Contents
The effect of dietary supplementation with cod liver oil (CLO), which is rich in n-3 polyunsaturated fatty acids (PUFAs), on resistance to cold shock and on freezability of boar semen was investigated. Ejaculates from 29 fertile Norwegian Landrace boars, randomly divided into control (n = 15) and CLO-group (n = 14), were frozen before and after a 12 week period of daily oil supplementation. Before each freezing, semen samples were taken to determine the fatty acid composition of the spermatozoa. Docosahexaenoic acid (22 : 6n-3; DHA) was the major fatty acid in total lipids. The n-3 fatty acid DHA increased in the CLO-group from 25.5 to 32.1% at the expense of the n-6 docosapentaenoic acid (22 : 5n-6), which decreased from 11.3 to 4.2% (p < 0.0001). The concentration of these fatty acids were unchanged in the control group. There was also a significant decrease of other PUFAs in the CLO-group (p < 0.05). Eicosapentaenoic acid (20 : 5n-3) was not found in any sample. At four different steps of the preservation process (30, 15, 5°C and after freezing/thawing) both motility and acrosome integrity were assessed. No significant differences were found either within or between the groups at any of the steps. In conclusion, CLO-supplementation alters the lipid composition of the membranes of boar spermatozoa, however, this does not seem to have any beneficial effect on cold shock and freezability of boar semen.  相似文献   

2.

Background

Rapid body fat mobilization, obesity, and an inadequate supply of n-3 polyunsaturated fatty acids (PUFA) have been suggested to play roles in the etiology of fatty liver in the American mink (Neovison vison). This study examined the effects of feeding intensity and dietary fat source on fatty liver induced by fasting. In a multi-factorial design, 3 different fat sources (herring oil, rich in n-3 PUFA, soya oil, rich in n-6 PUFA, and canola oil, rich in n-9 monounsaturated fatty acids) were fed to mink at a low and high feeding intensity for 10 weeks, followed by an overnight or a 5-day fasting treatment to induce fatty liver.

Results

Fasting led to the development of fatty liver with increased severity in the mink fed at the high feeding intensity. The herring oil diet, high in long-chain n-3 PUFA, was found to decrease the severity of fatty liver in the mink at the high feeding intensity.

Conclusion

Preventing excessive weight gain and increasing dietary intake of n-3 long-chain PUFA may help prevent excessive lipid accumulation during prolonged periods of fasting or inappetence by promoting hepatic fatty acid oxidation.  相似文献   

3.
1. Laying hen performance, yolk fat fatty acid concentrations and firmness of eggs were evaluated with respect to the inclusion in the diet of conjugated linoleic acid (CLA) and fish oil. 2. Nine diets were arranged factorially, with three levels of supplementation of CLA (1, 3 and 5 g/kg) and fish oil (0, 14 and 20 g/kg). 3. Type of diet did not affect egg production traits. 4. CLA addition increased yolk weight and yolk fat concentrations of CLA, saturated and total long-chain n-3 fatty acids, but decreased those of monounsaturated and total long-chain n-6 fatty acids. 5. Fish oil addition increased long-chain n-3 fatty acids yolk fat concentrations but decreased those of CLA, saturated and long-chain n-6 fatty acids. 6. Effects of CLA addition on yolk fat concentrations of C22:4 n-6 and C20:5 n-3 were greater when no fish oil was added to the diet. 7. CLA supplementation increased linearly yolk moisture and firmness and altered albumen and yolk pH.  相似文献   

4.
The influence of fish oil (highly unsaturated) and beef tallow (highly saturated) with vitamin E (100 IU/kg) supplementation on the antioxidant status of broiler chicken cockerels was investigated. Chicks were fed a control diet with no added fat, 40 g/kg each of fish oil and beef tallow diets, respectively, from 11 to 42 days of age. Tocopherol concentration and the rate of lipid peroxidation, thiobarbituric acid reactive substance (TBARS) in liver, fatty acid composition of the liver lipids, blood serum total antioxidant status (TAS), and reduced glutathione (GSH) content were determined. Vitamin E supplementation of the diet increased liver alpha-tocopherol content in chicks regardless of the type of dietary fat. Fish oil diet resulted in higher liver TBARS value while beef tallow diet showed lower values compared to the control diet. Vitamin E supplementation reduced liver TBARS as well as serum GSH, and raised serum TAS for all diets. Serum GSH was the same for vitamin E supplemented diets regardless of the fat supplement. Fish oil diets resulted in a significant increase in hepatic lipid n-3 PUFA content. A significant positive correlation was found between liver TBARS and n-3 PUFA content. No relationships were established, however, between liver TBARS and n-6 PUFA or saturated fatty acids. The results suggest that feeding oils rich in n-3 PUFA increases tissue concentration of these fatty acids, consequently increasing tissue lipid peroxidation and reducing the antioxidative status of broiler chickens. Supplementing high levels of vitamin E with such oils may increase tissue oxidative stability. Serum TAS or GSH may be used as a measure of antioxidative status in chickens.  相似文献   

5.
In a model experiment, Holstein-Friesian dairy cows were fed on a corn-silage-based diet supplemented with 11.75 MJ NE1 per day of calcium soaps of palm oil fatty acids (CAS) or hydrogenated triglyceride (HTG) or without fat supplementation (control). All diets were fed to the cows over a period from 21 +/- 3 days (d) prior to the expected calving to d 100 +/- 5 postpartum. On d 25 (basal sample) and d 14 prepartum as well as on d 5 and 25 postpartum liver samples were collected by percutaneous biopsy. Total lipid content, fatty acid composition and glycogen of liver tissues were determined. At d 5 postpartum, both control and CAS cows had higher liver lipid (P < 0.05) and lower glycogen (P < 0.05) concentrations than cows in the HTG group. No significant (P < 0.05) differences were detected in liver fat content among the groups at d 14 prepartum or d 25 postpartum. The glycogen concentration slightly decreased in the liver of cows in each treatment group from d 14 prepartum to d 5 postpartum; however, this decrease was more intensive in both the control and CAS groups than in the HTG group. The variations in liver lipid concentrations were accompanied by significant changes in the proportion of C16:0, C16:1n-7, C18:0, C18:1n-9, C18:2n-6 and C20:4n-6 fatty acids in the liver lipids. The results show that HTG supplementation exerted more advantageous effects on liver lipid and glycogen metabolism than did CAS supplementation.  相似文献   

6.
OBJECTIVE: To determine the effects of carnitine (Ca) or taurine (Ta) supplementation on prevention of lipid accumulation in the liver of cats. ANIMALS: 24 adult cats. PROCEDURE: Cats were fed a weight-gaining diet sufficient in n-6 polyunsaturated fatty acids (PUFAs), low in long-chain n-3 PUFAs (n-3 LPUFA), and containing corn gluten for 20 weeks. Cats gained at least 30% in body weight and were assigned to 4 weight-reduction diets (6 cats/diet) for 7 to 10 weeks (control diet, control plus Ca, control plus Ta, and control plus Ca and Ta). RESULTS: Hepatic lipids accumulated significantly during weight gain and weight loss but were not altered by Ca orTa after weight loss. Carnitine significantly increased n-3 and n-6 LPUFAs in hepatic triglycerides, decreased incorporation of 13C palmitate into very-low-density lipoprotein and hepatic triglycerides, and increased plasma ketone bodies. Carnitine also significantly increased weight loss but without altering the fat to lean body mass ratio. Taurine did not significantly affect any variables. Diets low in n-3 LPUFAs predisposed cats to hepatic lipidosis during weight gain, which was further exacerbated during weight loss. Mitochondrial numbers decreased during weight gain and weight loss but were not affected by treatment. Carnitine improved fatty acid oxidation and glucose utilization during weight loss without correcting hepatic lipidosis. CONCLUSIONS AND CLINICAL RELEVANCE: The primary mechanism leading to hepatic lipidosis in cats appears to be decreased fatty acid oxidation. Carnitine may improve fatty acid oxidation but will not ameliorate hepatic lipidosis in cats fed a diet low in n-3 fatty acids.  相似文献   

7.
1. Three hundred and twenty d-old chickens were fed on a wheat/maize-soyabean meal diet supplemented with (i) 50 g/kg lard, (ii) 25 g/kg lard and 25 g/kg rapeseed oil, (iii) 50 g/kg rapeseed oil, and (iv) 50 g/kg rapeseed oil and 200 mg copper per kg as copper sulphate pentahydrate. 2. Final weights at 39 d of age in chickens receiving rapeseed oil were lower by 9% than in those fed on the diet containing only lard (P<0.05). The fatty acids profiles of lipids extracted from the tissues of 10 chickens per group reflected those of the diets. 3. The polyunsaturated fatty acid (PUFA) content of breast muscles and abdominal fat (expressed as a percentage of total fatty acids) was increased and the ratio of n-6:n-3 fatty acids was decreased by the substitution of lard by rapeseed oil (P<0.001). These changes were more pronounced for the adipose tissue than for breast muscles. 4. Copper sulphate supplementation increased the final body weight of chickens by 4.3% (P<0.05), reduced the saturated fatty acid (SFA) proportion (P<0.05) in abdominal fat and increased the PUFA:SFA ratio (P<0.05). The magnitude of improvement, however, was small. 5. The substitution of rapeseed oil for lard decreased the concentration of cholesterol in breast muscles by 13%. Copper supplementation further reduced the cholesterol content by 25%. Both effects were significant (P<0.001).  相似文献   

8.
多不饱和脂肪酸对鱼饲料转化率的影响及其机理   总被引:1,自引:0,他引:1  
由于过分的海洋捕捞以及对海水鱼消费的增加,导致海水鱼油供不应求,研究使用鱼油替代品发展水产养殖业势在必行。植物油供应稳定,价廉物美,但是它富含多不饱和脂肪酸(PUFAs),却缺乏高度不饱和脂肪酸(HUFAs),尤其缺乏n-3HUFAs。文章结合本研究所多年来对HUFAs的研究成果,重点综述PUFAs特别是n-3HUFAs对鱼饲料转化率的影响及其机理,并探索植物油替代鱼油存在的问题及解决方法,以促进有效利用PUFAs和用植物油替代鱼油养殖海水鱼,发展可持续的海水养殖业。  相似文献   

9.
Thirteen horses of Thoroughbred or Standardbred breeding were used to study the effect of dietary fish oil supplementation on blood lipid characteristics. Horses were assigned to either fish oil (n = 7) or corn oil (n = 6) treatment groups for 63 d. The fish oil contained 10.8% eicosapentaenoic acid (EPA) and 8% docosahexaenoic acid (DHA). Each horse received timothy hay and a mixed-grain concentrate at rates necessary to maintain BW. Oil (corn or fish) was top-dressed on the concentrate daily at a rate of 324 mg/ kg of BW. The n-6:n-3 ratio was approximately 3.6:1 for horses receiving the corn oil diet and 1.4:1 for horses receiving the fish oil diet. Horses were exercised 5 d/wk during the study. Before supplementation, there was no difference in the concentrations of any serum fatty acids between the 2 treatment groups. The mean basal concentrations of EPA and DHA on d 0 were 0.04 and 0.01 mg/mL, respectively. After 63 d, horses receiving the fish oil treatment, but not those receiving the corn oil treatment, had increased concentrations of EPA and DHA (P <0.05). Fish oil supplementation for 63 d also increased the concentrations of C22:0, C22:1, and C22:5 fatty acids (P <0.05). Overall, horses receiving fish oil had a decreased concentration of n-6 fatty acids (P <0.05) and a greater concentration of n-3 fatty acids (P <0.01), resulting in a lower n-6:n-3 fatty acid ratio after 63 d (P <0.05). Serum cholesterol concentrations increased (P <0.05) during the supplementation period in horses receiving the corn oil but not in horses receiving the fish oil. Compared with horses receiving corn oil, horses receiving fish oil had lower serum triglycerides at d 63 (P <0.05). These results demonstrate that 63 d of fish oil supplementation at 324 mg/kg of BW was sufficient to alter the fatty acid profile and blood lipid properties of horses receiving regular exercise.  相似文献   

10.
The susceptibility of a given muscle tissue to lipid oxidation may not only depend on the presence of unsaturated fatty acids and the balance between antioxidants and prooxidants, but also on the composition of the skeletal muscle. In the present study, the effects of dietary supplementation of vitamin E (dl-alpha-tocopheryl acetate) and copper in combination with a high level of monounsaturated fatty acids were examined with regard to the antioxidant concentration and the susceptibility to lipid oxidation of two muscles, longissimus (LD) and psoas major (PM), representing different oxidative capacity. In addition, fatty acid profiles of the backfat and the intramuscular lipids, as well as fresh meat quality traits, were studied. Pigs were allotted to a 3x3 factorial experiment with three levels of dl-alpha-tocopheryl acetate (0, 100, and 200 mg/kg of feed) and three levels of copper (0, 35, and 175 mg/kg of feed) added to a diet containing 6% rapeseed oil. A basal diet (without rapeseed oil) was added to the experimental design, giving a total of 10 dietary treatments. Muscle alpha-tocopherol concentrations increased (P<.001) with increasing dl-alpha-tocopheryl acetate in the feed. The antioxidative status was higher in PM than in LD, when considering the concentration of alpha-tocopherol (P<.001) and the activity of antioxidant enzymes (superoxide dismutase, P<.001; glutathione peroxidase, P = .06). Supplemental copper did not give rise to any deposition of copper in muscle tissue or backfat, but the antioxidant status of PM increased. The susceptibility to lipid oxidation was reduced in LD with increasing dietary dl-alpha-tocopheryl acetate and in PM with increasing dietary copper. Supplemental dl-alpha-tocopherol acetate improved the water-holding capacity of LD (P = .005) and PM (P = .003). The fatty acid composition of the backfat and the triglyceride fraction of the intramuscular fat became more unsaturated with the addition of rapeseed oil to the feed. Higher intakes of monounsaturated fatty acids due to the rapeseed oil were also reflected in the phospholipid fraction of the intramuscular fat, but no influence on the proportion of saturated fatty acids was seen. The susceptibility to lipid oxidation of PM was lower for pigs on the rapeseed oil-based diet than for those on the basal diet. The energy metabolic status of the muscles and the accumulation of calcium by the sarcoplasmic reticulum were not influenced by the dietary treatments, but there were differences between muscle types. The addition of rapeseed oil to the diet reduced the muscular content of glycogen (LD, P = .02; PM, P = .06) and elevated the plasma concentration of free fatty acids (P = .05). Overall, dietary fat, dl-alpha-tocopherol acetate, and copper affected the oxidative status of pig muscles, and the results differed depending on muscle type.  相似文献   

11.
The purpose of this study was to investigate the concentration of polyunsaturated fatty acids (PUFAs) in subcutaneous fat and the relative amounts of PUFAs in plasma in two groups of dogs. Group 1 included dogs with a good skin and coat condition. Group 2 was comprised of dogs with pruritus and compatible clinical signs of atopy. The fatty acid composition of the total lipid fraction was analyzed by gas chromatography. In subcutaneous fat, the concentration of adrenic acid (22:4n-6) was lower in the group of pruritic dogs compared to dogs with healthy skin. The amount of dihomogammalinolenic acid (20:3n-6; DGLA) in plasma lipids from pruritic dogs was higher than in dogs without skin problems.  相似文献   

12.
The effect of dietary n-3 fatty acids on the fatty acid composition and lipid peroxidation of different tissues in pigs were studied. 20 castrated male pigs were included in this investigation, one half was fed daily a diet containing 1.3 g n-3 fatty acids/kg diet (control) and 10 pigs were fed a diet containing 14 g n-3 fatty acids/kg diet (n-3 diet) at the growing-finishing period. The intake of dietary n-3 fatty acids increased the concentration of these fatty acids in backfat, and the neutral and polar fractions of skeletal muscle and heart homogenates. The polar fraction showed an increased relative concentration of n-3 fatty acids in comparison to control, while the n-6 fatty acid content was reduced. In heart homogenates there was an enlargement of n-3 fatty acids both in polar lipids and in neutral lipids whilst n-6 fatty acids were decreased. Feeding n-3 fatty acid enriched diet had no influence on meat quality parameters drip loss, meat colour or pH value. The lipid peroxidation (measured as malondialdehyde equivalents) was in the order liver > heart > skeletal muscle with higher values in the n-3 group. However, by stimulation of oxidation by Fe2+/ascorbate for 3 hours the order of oxidative products in the n-3 group was muscle > liver > heart, whereas in the control group the order was liver > heart = muscle. Summarized, feeding a highly n-3 fatty acid enriched diet caused an incorporation of these fatty acids and increased the susceptibility to peroxidation in all investigated tissues.  相似文献   

13.
An 18-week feeding trial was performed to investigate the effects of an omega-3 (n-3) fatty acid-enriched ration on plasma fatty acid concentrations and platelet aggregation in healthy horses. Flaxseed oil served as the source of the n-3 fatty acid alpha-linolenic acid (ALA). Twelve horses were fed dietary maintenance requirements using a complete pelleted ration (80%) and timothy grass hay (20%) for a 2-week acclimation period before being randomly assigned either to a treatment (group 1) or control (group 2) group. Group 2 horses (n = 6) were fed the diet described in the acclimation period, whereas group I horses (n = 6) were fed a 10% flaxseed oil-enriched complete pellet (80%) and grass hay (20%). Biological samples and physical measurements were collected at one point during the acclimation period (week 0) and every 4 weeks thereafter (weeks 4, 8, 12, and 16). Body weight, CBC (including platelet count), plasma fibrinogen. electrolyte (Na, K, and Cl) concentrations, and biochemical profile enzyme activities (aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltransferase, and creatine kinase) did not change markedly with diet. Platelet aggregation was not altered by the supplementation of flaxseed oil in these healthy horses, although increases in plasma cis-polyunsaturated 18-carbon fatty acids C18:3; n-3 (ALA) and C18:2; n-6 (linoleic acid), biologically active C20:5; n-3 (eicosapentaenoic acid [EPA]), and malondialdehyde (MDA) were evident. There were no marked decreases in C20:4; n-6 (arachidonic acid [AA]) or increases in C22:6; n-3 (docosahexaenoic acid [DHA]), signifying that flaxseed oil may have had a high percentage of omega-6 (n-6) fatty acids as well as n-3 fatty acids, and this relatively high n-6: n-3 fatty acid ratio may have affected the biochemical effect of n-3 fatty acids. In healthy horses supplemented with flaxseed oil, platelet aggregation was not altered, which may have been due to the limited biologic effect in healthy subjects or the inability of flaxseed oil to induce the necessary biochemical effect of replacing n-6 fatty acids with n-3 types.  相似文献   

14.
A total of 600 crossbred pigs, whereof 56 were randomly selected for more in-depth studies of carcass and pork quality, were employed to test different tuna oil feeding regimens. The focus was put on the efficiency to enrich lean and adipose tissue with n-3 fatty acids and the expression of adverse side-effects on performance, carcass, and pork quality. The 4 treatments were 0% tuna oil in diet (T0; control), 1% of unrefined tuna oil in diet fed from 35 to 90 kg of BW (T1), and 3% of unrefined tuna oil in diet offered during the early (35 to 60 kg of BW; T3-E) or late stage of fattening (75 to 90 kg of BW; T3-L). With this arrangement, pigs consumed equal lifetime amounts of tuna oil (approximately 1.6 kg per pig). None of the tuna oil treatments had significant effects on performance. There were no differences in carcass quality among tuna oil groups except for group T3-E where carcasses and loin chops were fatter than those of the other groups. Water-holding capacity and texture of the loin as well as firmness and melting properties of the backfat remained widely unaffected by the treatments. Tuna oil feeding resulted in a lighter, less red and less yellow backfat and was found to increase the proportion of n-3 fatty acids to total fatty acids in all treatments. This especially concerned eicosapentaenoic acid and docosahexaenoic acid, but not alpha-linolenic acid. There was also a slight increase in oleic acid, whereas n-6 fatty acids largely decreased. Feeding tuna oil during a short period at the end of fattening (T3-L) or permanently during fattening (T1) proved to be similarly efficient in increasing n-3 fatty acid content of lean and adipose tissue (to about 1.6-fold of T0). By contrast, only two-thirds of this increase was found when the same amount of tuna oil had been fed exclusively during early fattening (T3-E). The decreased efficiency in T3-E was associated with better sensory flavor, overall acceptability grading, and oxidative status. The results show that, particularly under the condition of a continuous supply, much of the n-3 fatty acids ingested in early fattening can be recovered in pork. These findings give farmers flexibility as to when and how pork can be enriched in n-3 fatty acids with fish oil.  相似文献   

15.
A crossover feeding trial was performed with 9 horses suffering from recurrent airway obstruction (RAO). The study aimed to determine whether ingestion of sunflower oil (SFO), rich in linoleic acid, or seal blubber oil (SBO), a source of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs), changes the fatty acid (FA) ratios in plasma and leukocyte membrane phospholipids (PLs) or the leukocyte numbers or proportions of cell types in the airways. We also investigated diet-related changes in respiratory rate, maximum change in pleural pressure (deltaPpl(max)), dynamic compliance (C(dyn)), and pulmonary resistance (RL). Each animal was fed hay and oats supplemented with 320 mg/kg body weight (BW) of either SFO or SBO for 10 wk. Before and after the feeding periods, we performed FA analyses, cytologic testing of the pulmonary epithelial lining fluid (PELF), clinical scoring, and pulmonary function testing. The results demonstrated that supplementary FAs were readily ingested and incorporated into leukocyte cell membranes. The n-6:n-3 FA ratios in plasma and leukocyte PLs were reduced after SBO supplementation, as were the PELF leukocyte counts (P < 0.05). On the other hand, pulmonary function and clinical signs were not markedly changed by the different dietary FAs. These results indicate a possible influence of dietary n-3 PUFAs on the pulmonary inflammation of horses with RAO. Further studies are warranted to address effects on inflammatory mediators and clinical outcome.  相似文献   

16.
Crossbred steers (n = 136) were used to assess breed differences in growth performance, carcass characteristics, fatty acid composition (total lipids and phospholipids), and palatability attributes of longissimus muscle. A multiple regression model was applied to crossbreeding data to estimate genetic differences between Simmental and Red Angus at the same level of backfat finish (10 mm). Simmental spent 71 more (P < 0.001) days on feed to acquire the same degree of backfat thickness as Red Angus, had heavier (P < 0.001) slaughter weights, larger (P = 0.002) longissimus muscle area, and increased (P = 0.023) lean yield. Average daily gain did not differ (P = 0.297) between breeds. Simmental were less (P = 0.012) efficient in converting feed to gain than Red Angus. Generally, there were few breed differences in palatability attributes for longissimus and semitendinosus muscles, with the exception of increased (P < 0.05) beef flavor scores for Simmental beef vs Red Angus beef across both muscles. For total lipids, concentrations of myristoleic acid (14:1), palmitoleic acid (16:1), and vaccenic acid (18:1n-7), along with n-6 to n-3 fatty acid (n-6:n-3) ratio, were greater (P < 0.05) in Simmental than Red Angus. In contrast, concentrations of margaric acid (17:0), eicosapentaenoic acid (20:5n-3), and total n-3 polyunsaturated fatty acids (n-3 PUFA) were greater (P < 0.05) in Red Angus than Simmental. For phospholipids, Simmental had lower (P < 0.05) amounts of 20:5n-3, docosahexaenoic acid (22:6n-3), and n-3 PUFA, with a greater (P = 0.017) n-6:n-3 ratio. Activity of delta9-desaturase enzyme in the conversion of palmitic acid (16:0) to 16:1 was greater (P = 0.001) in total lipids from Simmental as compared with Red Angus. A genetic basis for fatty acid differences is suggested, although the biological and practical significance needs to be demonstrated.  相似文献   

17.
Polyunsaturated fatty acids ( PUFAs )play an important role in sperm quality and fertility.This study was conducted to investigate the effect of dietary supplementation with PUFAs on male mice reproductive capacity.Mice were fed a diet of 4% soybean oil (SO),4% fish oil (FO),or 4% conjugated linoleic acid (CLA) for 30 days.Litter sizes and sperm quality were measured during the study.Litter size decreased in females mated with FO group males.Although sperm total number,motility,and in virto fertilization did not differ among treatments,the proportion of intact sperm membrane decreased in the FO group compared to other groups.This was supported by the increased proportion of damaged sperm membrane in the FO group.Furthermore,the percentage of high mitochonddal membrane potential (MMP) declined,but the percentage of low MMP was increased by dietary FO and CLA supplementation compared to the SO group.Sperm membrane phospholipid in mice receiving the FO diet had a higher concentration of docosapentenoic acid ( C22 ∶5n-3,DPA ),docosahexaneoic acid ( C22 ∶ 6n-3,DHA),and n-3 PUFAs,but lower levels of arachidonic acid ( C20∶4n-6,AA) and n-6 PUFAs compared to those receiving the SO diet.These data suggest that decreased sperm quality in mice fed a FO diet may be due to excessive DPA and DHA in the membrane.  相似文献   

18.
随着消费者健康意识的提高,越来越多的研究关注提高家养动物肉产品中多不饱和脂肪酸(PUFA)含量,尤其是n-3长链脂肪酸和共轭亚油酸(CLA)在羊、牛、猪肉肌内脂中的含量。研究结果表明通过添加鱼油或鱼粉能提高动物肉中n-3长链脂肪酸含量。富含亚麻油酸(LNA)的日粮能提高肉中LNA、二十碳五烯酸(EPA)和二十二碳五烯酸(DPA)水平,但大部分对肌肉中二十二碳六烯酸(DHA)水平没有影响。然而,在日粮中添加鱼油或鱼粉大部分能提高动物肌肉中DHA含量。大部分研究中提高n-3脂肪酸含量的同时n-6脂肪酸含量下降,这主要归因于试验组日粮中n-6脂肪酸降低。这样刚好可以使肉中两者比例更合理,但对多不饱和脂肪酸与饱和脂肪酸比例没什么影响。饲喂反刍动物富含n-3脂肪酸日粮(亚麻籽或加草料)、鱼油或富含LA的浓缩料可提高肌肉中c9t11CLA含量。牛肉、羊肉中c9t11CLA在总脂中含量介于0.2~1.0 g/100 g,不随营养因素提高到更高。相对应的,在单胃动物日粮中添加混合CLA油则显著提高CLA含量。  相似文献   

19.
This study investigated the effect of modifying the n-6:n-3 fatty acid ratio (FAR) of diets using linseed, soybean, and cottonseed oils on apparent digestibility, ruminal fermentation characteristics, growth performance, key circulating hormones, and the fatty acid profile of ruminal digesta, liver, and fore-shank muscle of growing lambs fed a high concentrate diet. Forty individually housed Katadhin Dorper lambs (average of 20.0 kg of BW) were fed Bermudagrass hay in ad libitum amounts and concentrates at 3.7% of BW daily. The concentrate contained 68.9% corn, 23.8% soybean meal, 3.3% limestone, and 4.0% oil supplements (DM basis). The treatments consisted of dietary n-6:n-3 FAR of 2.3:1, 8.8:1, 12.8:1, and 15.6:1. After feeding for 35 d in metabolism crates, lambs were slaughtered 15 h after feeding, and samples of ruminal digesta, blood, liver, and foreshank tissue were collected. Increasing dietary n-6:n-3 FAR did not affect the intake of DM nor the apparent digestibility of DM, ether extract, NDF, or ADF, but did increase apparent digestibility of CP (linear, P < 0.05). Concentrations of ruminal butyrate increased linearly (P < 0.05) with increasing dietary n-6:n-3 FAR, whereas the valerate concentration decreased linearly (P < 0.001). Concentrations of plasma insulin and IGF-I were not affected by dietary n-6:n-3 FAR. Concentrations of C18:3n-3 increased linearly (P < 0.001), whereas that of C18:2n-6 decreased linearly (P < 0.001) in ruminal digesta with decreasing dietary n-6:n-3 FAR. Concentrations of transisomers of fatty acids in ruminal digesta did not change. Proportions of C18:0 in liver and foreshank muscle were unchanged by diet. The proportion of trans11 C18:1 and cis-9 trans11 CLA decreased (P < 0.05) in liver but increased (P < 0.05) in foreshank muscle as dietary n-6:n-3 FAR decreased. Proportions of all measured n-3 fatty acids were greater in liver when diets contained more C18:3n-3 from linseed oil. By decreasing the dietary n-6:n-3 FAR, the proportions of n-6 fatty acids in foreshank muscle decreased dramatically; specifically, C18:2n-6 decreased linearly (P < 0.001) from 28.0 to 16.5% and C20:4n-6 decreased linearly (P < 0.001) from 14.7 to 8.6%. Although feeding a diet that contained more n-3 fatty acids increased the n-3 fatty acid concentration of muscle, the ratio of PUFA to SFA was decreased.  相似文献   

20.
The present study was conducted to investigate the effect of long-term feeding of conjugated linoleic acid (CLA) and fish oil on egg quality characteristics, production performance, liver pathology, and egg fatty acid content of laying hens. Single Comb White Leghorn laying hens (n = 112), 21 wk old, were placed in cages and randomly assigned to 4 diets (28 hens/diet, 4 replicates of 7 hens) containing 3.0% yellow grease (control), 2.75% yellow grease + 0.25% CLA (YG-CLA), 2.5% yellow grease + 0.25% CLA + 0.25% fish oil (YG-CLA-FO), and 2.75% yellow grease + 0.25% fish oil (YG-FO). The experimental diets were fed for 12 mo. Eggs were collected daily for 12 mo. Feed consumption, hen-day egg production, and feed efficiency were monitored. At the end of the trial, hepatic tissue was collected for histopathology. No effect of diet was found on feed consumption, hen-day egg production, feed efficiency, egg weight, yolk weight, shell weight, or Haugh unit. The YG-CLA and YG-CLA-FO diets produced an increase in CLA and saturated fatty acids in the egg and liver tissue with a concomitant reduction in monounsaturated fatty acids (P < 0.05). Feeding YG-CLA-FO and YG-FO increased the n-3 fatty acids in egg yolk and liver of hens (P < 0.05). No difference was observed in the number of fat vacuoles in the liver tissue. The total fat content of hepatic and abdominal fat pads did not differ among treatments (P > 0.05). Regardless of the diet, as the hens aged, egg weight, yolk weight, and egg total fat increased, and shell weight decreased (P < 0.05). These data demonstrate that eggs with increased n-3 fatty acids and CLA can be generated by minor diet modifications without affecting the production performance or health of birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号