首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
2.
Citrus psorosis virus (CPsV), genus Ophiovirus, causes a bark scaling disease of citrus. CPsV virions are kinked filaments with three negative‐stranded RNA molecules (vRNA) and a 48 kDa coat protein. The effect of temperature on symptom expression, virus accumulation and RNA silencing was examined in sweet orange seedlings (Citrus sinensis) graft‐inoculated with three different CPsV isolates and grown in a glasshouse at 26/18°C or 32/26°C (day/night). Most plants kept in the cooler glasshouse showed a shock reaction in the first flush with shoot necrosis, and then moderate to intense chlorotic flecking and spotting in young leaves, whereas plants incubated at 32/26°C did not exhibit shoot necrosis, and young leaf symptoms were milder. Virus titre estimated by ELISA and by northern and dot blot hybridization paralleled symptom intensity, with significantly higher virus accumulation in plants incubated at 26/18°C. The amount of CPsV‐derived small RNAs (CPsV‐sRNAs) slightly increased at 32/26°C, with the ratio of CPsV‐sRNA/vRNA being higher at 32/26°C than at 26/18°C. These results suggest that (i) CPsV infection induces RNA silencing in citrus plants, (ii) symptom intensity is associated with virus accumulation, and (iii) temperature increase enhances the RNA silencing response of citrus plants and decreases virus accumulation.  相似文献   

3.
The expression of engineered single‐chain variable fragments specific to the NIb RNA replicase of Plum pox virus (PPV) (scFv2A) in transgenic plants was successfully used as a strategy to interfere with viral infection. Different scFv2A fusion proteins were constructed to target those subcellular compartments, such as the cytosol, endoplasmic reticulum (ER) membrane structures and the nucleus, where NIb protein presumably accumulates. Several transgenic lines of Nicotiana benthamiana plants expressing the scFv2A targeted to the cytosol (2A lines), ER (6K2 lines) and nucleus (NLS lines) were obtained. The protective effect of scFv expression was determined by mechanical virus inoculation in five 2A, three 6K2 and four NLS transgenic lines. The strongest resistance was afforded with the 2A‐3 (six non‐infected plants out of 10), 6K2‐1 (17 out of 33) and NLS‐11 (16 out of 19) transgenic lines. The success of this interference with PPV infection opens new possibilities for the control of this RNA virus and could be exploited not only to confer resistance in transgenic plants, but also to elucidate the role of the non‐structural NIb protein in different cell compartments during viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号