首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plant polygalacturonase inhibitor proteins (PGIPs) bind fungal polygalacturonases (PGs), but inhibition specificities and kinetics vary within and among species. Purified bean PGIP inhibited all fungal PGs we tested, includingFusarium moniliforme PG. Pear PGIP, however, was only effective against Botrytis cinerea PG. Moreover, tomato PGIP inhibited B. cinerea PG more than Aspergillus niger PG. Models of codon evolution for 22 dicot PGIPs and 19 fungal PGs indicated that advantageous substitutions dominate the molecular evolution of these genes and identified 9 amino acid residues, each, that are likely to evolve adaptively in response to natural selection. Many of these residues are within the β-strand/β-turn region of the PGIP LRR, including two sites known to alter inhibition specificities of bean PGIPs, but others lie outside this region. Our results complement existing molecular and biochemical studies of resistance specificity, and suggest new target amino acids for manipulating PG-inhibition.  相似文献   

2.
Fusarium yellows, caused by the soil‐borne fungus Fusarium oxysporum f. sp. betae (Fob), can lead to significant yield losses in sugar beet. This fungus is variable in pathogenicity, morphology, host range and symptom production, and is not a well characterized pathogen on sugar beet. From 1998 to 2003, 86 isolates of F. oxysporum and 20 other Fusarium species from sugar beet, along with four F. oxysporum isolates from dry bean and five from spinach, were obtained from diseased plants and characterized for pathogenicity to sugar beet. A group of sugar beet Fusarium isolates from different geographic areas (including nonpathogenic and pathogenic F. oxysporum, F. solani, F. proliferatum and F. avenaceum), F. oxysporum from dry bean and spinach, and Fusarium DNA from Europe were chosen for phylogenetic analysis. Sequence data from β‐ tubulin, EF1α and ITS DNA were used to examine whether Fusarium diversity is related to geographic origin and pathogenicity. Parsimony and Bayesian MCMC analyses of individual and combined datasets revealed no clades based on geographic origin and a single clade consisting exclusively of pathogens. The presence of FOB and nonpathogenic isolates in clades predominately made up of Fusarium species from sugar beet and other hosts indicates that F. oxysporum f. sp. betae is not monophyletic.  相似文献   

3.
Fusarium spp. are responsible for significant yield losses in sugar beet (Beta vulgaris) with Fusarium oxysporum f. sp. betae most often reported as the primary causal agent. Recently, a new species, F. secorum, was reported to cause disease in sugar beet but little is known on the range of virulence within F. secorum or how this compares to the virulence and phylogenetic relationships previously reported for Fusarium pathogens of sugar beet. To initiate this study, partial translation elongation factor 1-α (TEF1) sequences from seven isolates of F. secorum were obtained and the data were added to a previously published phylogenetic tree that includes F. oxysporum f. sp. betae. Unexpectedly, the F. secorum strains nested into a distinct group that included isolates previously reported as F. oxysporum f. sp. betae. These results prompted an expanded phylogenetic analysis of TEF1 sequences from genomes of publicly available Fusarium spp., resulting in the additional discovery that some isolates previously reported as F. oxysporum f. sp. betae are F. commune, a species that is not known to be a sugar beet pathogen. Inoculation of sugar beet with differing genetic backgrounds demonstrated that all Fusarium strains have a significant range in virulence depending on cultivar. Taken together, the data suggest that F. secorum is more widespread than previously thought. Consequently, future screening for disease resistance should rely on isolates representing the full diversity of the Fusarium population that impacts sugar beet.  相似文献   

4.
Sugar beet is widely grown throughout the world and represents the second largest crop used to produce sugar. Root rot in sugar beet, caused by Fusarium, significantly reduces yield, juice purity, and sugar concentration. Here, 307 Fusarium isolates were collected from sugar beet roots exhibiting typical root rot symptoms in eight provinces or autonomous regions of China from 2009 to 2012. Based on morphological characteristics and sequence data of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) and the translation elongation factor 1α (EF-1α), Fusarium oxysporum (38.4%) was identified as the most prevalent species, followed by F. solani (20.9%), and F. equiseti (18.9%). These three species were widely distributed in all eight of the provinces and autonomous regions. F. tricinctum (5.9%), F. brachygibbosum (4.6%), F. redolens (3.3%), F. proliferatum (3.3%), F. graminearum (2.3%), F. verticillioides (1.6%), F. nygamai (0.7%), and F. culmorum (0.3%) were less frequently obtained. Of the 307 Fusarium isolates, 117 representing different species and geographic locations were demonstrated to cause tip rot and vascular discoloration in sugar beet roots, with disease incidence ranging from 84.2 to 100.0% and disease index ranging from 41.94 to 75.83. This is the first detailed report of Fusarium species, in particular F. tricinctum, F. brachygibbosum, F. redolens, F. proliferatum, F. nygamai, and F. culmorum, causing sugar beet root rot in China.  相似文献   

5.
The soil-borne fungus Fusarium oxysporum can cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet. These two diseases cause similar foliar symptoms but different root response and have been proposed to be caused by two distinct F. oxysporum formae speciales. Fusarium yellows, caused by F. oxysporum f. sp. betae, presents vascular discoloration, whereas Fusarium root rot, due to F. oxysporum f. sp. radicis-betae, appears as black rot visible on the root surface. The aim of this work was to study the host-pathogen interaction between sugar beet lines and isolates originally characterized as Fusarium oxysporum f. sp. betae. Eight susceptible sugar beet lines, selected by the USDA-ARS (US) and UNIPD (University of Padova, Italy) breeding programs, were inoculated with three different isolates of F. oxysporum f. sp. betae, the causal agent of Fusarium yellows, representing different genetic groups. All inoculated lines developed symptoms, but severity, expressed as area under the disease progress curve (AUDPC), differed significantly (P < 0.05) among lines. Two lines from UNIPD, 6 and 9, were the most susceptible to the disease, whereas the other lines showed similar levels. The three isolates of F. oxysporum f. sp. betae differed significantly (P < 0.05) in disease severity. Five weeks after inoculation the plants were harvested and roots examined. Surprisingly, severe root rot was observed in the susceptible UNIPD lines when inoculated with all three isolates, while this symptom was never observed in the USDA germplasm. The development of this disease symptom obviously depends on the plant genotype.  相似文献   

6.
为明确甜菜中由抗性基因R编码的包含富亮氨酸重复序列(leucine-rich repeat,LRR)和核苷酸结合位点(nucleotide-binding site,NBS)的家族成员及其功能,基于甜菜基因组全长序列,利用HMMER、TBtools、Pfam、NCBI等软件和在线程序对甜菜NBS-LRR家族成员进行筛选和鉴定,采用生物信息学方法对鉴定到的成员进行亚家族分类、染色体定位、结构域分析、进化树构建、顺式元件分析和同源序列筛选。结果显示,从甜菜基因组中最终筛选鉴定到267条NBS-LRR家族基因序列,占甜菜基因组的0.614%,通过对267条基因序列进行结构域预测并进行分类,分属于N型、NL型、CNL型、TNL型和RNL型5个亚家族,分别包含110、25、128、3和1条序列。甜菜NBS-LRR家族基因大多位于2号、3号、4号和7号染色体上,根据基因簇划分原则发现有73.25%的基因以基因簇形式存在。经Clustal Omega和MEME在线程序对CNL型亚家族中具有完整卷曲螺旋(coiled-coil,CC)、NBS和LRR结构域的24条基因序列进行结构域保守性分析,共发现7个保守性较高的基序,基于CNL型亚家族128条基因序列构建的进化树显示CNL型亚家族的系统进化受CC、NBS和LRR结构域的影响较大。甜菜NBS-LRR家族基因含有大量植物激素相关顺式元件和多种胁迫响应元件,部分序列含有植物生理响应元件。甜菜NBS-LRR家族基因与菠菜和藜麦的抗病蛋白同源性较高。  相似文献   

7.
Five endo-polygalacturonases (PGs), three produced in culture filtrate byFusarium moniliforme, Sclerotium cepivorumandBotrytis aclada,respectively, and two (one acidic and one basic isoform) obtained fromSclerotinia sclerotiorumsoybean infected hypocotyls, were purified in order to characterize the activity of polygalacturonase inhibitor(s) (PGIP(s)) from leek stalk tissue (Allium porrumL.). Three apparently different PGIPs (PGIP-I, PGIP-II and PGIP-III) were purified from the leek tissue. The two more abundant PGIPs (PGIP-I and PGIP-III), although possessing similar pIs of about 6.5, differed in chromatographic behaviour, their molecular mass (39 and 42 kDa, respectively), and specific activity when assayed with the fungal endo-PGs. In addition, PGIP-I was solubilized from tissue homogenate with a low-salt buffer whilst PGIP-III needed a high-salt buffer for extraction (behaving as an ionically wall-bound protein). PGIP-II had very similar properties to PGIP-I, but was extracted using the high-salt buffer. The purified PGIPs and the crude leek extract showed similar inhibition activity patterns against the five fungal endo-PGs. The maximum inhibition activity was observed against the basic endo-PG fromS. sclerotiorum,followed by the acidic endo-PG ofS. sclerotiorumand the endo-PG fromB. aclada.In contrast, no inhibition of endo-PGs fromS. cepivorumandF. moniliformewas observed. Four different concentrations of the five fungal endo-PGs were incubated separately with slices of leek stalk, and the galacturonides released in the incubation mixture were measured. At every level used the endo-PGs ofF. moniliformeandS. cepivorumshowed the maximum activity in uronide releasing. The endo-PGs ofS. sclerotiorum(acidic PG) andB. acladawere active only when high levels were used while the basic endo-PG ofS. sclerotiorumwas not active in combustion with any level of PGIP. These results indicate that a close relationship exists between PGIP activityin vitroand the ability of PGIP to protect leek tissue from endo-PG degradation.  相似文献   

8.
Polygalacturonase inhibiting proteins (PGIPs) are leucine-rich repeat glycoproteins, localized in the cell wall of most plant species, capable of countering the activity of endo-polygalacturonases (endo-PGs) produced by phytopathogenic fungi. The PGIP from Allium porrum leaves was analysed to ascertain the presence of different molecular forms of PGIP. Leek PGIP was separated into two fractions: a soluble and an ionically wall-bound PGIP, each of which was then purified by cation-exchange chromatography. Two and three peaks of PGIP activity were obtained, respectively. PGIP isoforms contained in each peak were separated by isoelectrofocusing (IEF) on a polyacrylamide gel. Following the separation, the gel was first overlaid with sodium polygalacturonate and then treated with the endo-PG from either Sclerotinia sclerotiorum, Fusarium moniliforme or Botrytis aclada. The endo-PG(s) hydrolyse the overlaid substrate except where active inhibitors are present. The presence of PGIPs is revealed by ruthenium red staining of the nonhydrolysed substrate. Each PGIP peak following IEF separation revealed several PGIP isoforms with pIs between 5.0 and 7.0. More than 20 isoforms were detected in total, with considerable differences in their inhibitory activity. While similar PGIP isoform patterns were obtained by developing the IEF gels with the endo-PGs of S. sclerotiorum and B. aclada, less intense PGIP bands were observed with the endo-PG from B. aclada, consistent with inhibition assays performed in solution. The endo-PG from F. moniliforme, which is not inhibited at all by leek PGIP in solution, consistently showed no PGIP band on the gel assay.  相似文献   

9.
Rhizoctonia solani Kühn is a serious plant pathogenic fungus, causing various types of damage to sugar beet (Beta vulgaris L.). In Europe, the disease is spreading and becoming a threat for the growing of this crop. Plant resistance seems to be the most practical and economical way to control the disease. Experiments were carried out to optimise a greenhouse procedure to screen plants of sugar beet for resistance to R. solani. In the first experiment, two susceptible accessions were evaluated for root and leaf symptoms, after being grown in seven different soil mixtures and inoculated with R. solani. The fungus infected all plants. It was concluded that leaf symptoms were not reliable for the rating of disease severity. Statistically significant differences between the soil mixtures were observed, and there were no significant differences between the two accessions. The two soil mixtures, showing the most severe disease symptoms, were selected for a second experiment, including both resistant and susceptible accessions. As in the first experiment, root symptoms were recorded using a 1–7 scale, and a significant expression of resistance was observed. The average severity of the disease in the greenhouse experiment generally was comparable with the infection in field experiments, and the ranking of the accessions was the same in the two types of experiments. It was concluded that evaluation procedures in the greenhouse could be used as a rapid assay to screen sugar beet plants for resistance to R. solani.  相似文献   

10.
The correlation between intensity of lipid peroxidation and changes in antioxidant capacity of sugar beet plants (cv. ‘Drena’) infected with Rhizoctonia solani Kühn isolate (AG 2-2 IIIB group) was studied. Successful inoculation was confirmed by the presence of infection cushions in a cross section of leaf petioles. On the 7th day of the experiment, phenylalanine ammonia-lyase (PAL; EC. 4.3.1.5) activity was in negative correlation with intensified lipid peroxidation process in leaves of sugar beet plants (r= –0 .99). Also, in leaves and roots of inoculated sugar beet plants, total flavonoids content (35% and 20%, respectively) and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity (80% and 55%, respectively) were significantly reduced. Necrotic processes resulting from R. solani infection of sugar beet plants was followed by induction of plant phenolics metabolism; however, antioxidant capacity of these plants was reduced.  相似文献   

11.
12.
The abilities of fungi pathogenic and nonpathogenic to bean (Phaseolus vulgaris) to metabolize the phytoalexin phaseollin were compared when grown in shake cultures containing 12 to 15 μg phaseollin/ml. Under these conditions phaseollin was metabolized by five out of seven pathogens and by three out of five nonpathogens. Disappearance of phaseollin was accompanied by the appearance of metabolic products in cultures ofFusarium solani f. sp.phaseoli, Colletotrichum lindemuthianum, Botrytis cinerea andCladosporium herbarum. The nonpathogenC. herbarum detoxified phaseollin to 1a-hydroxyphaseollone as rapidly as the pathogenF. solani f.sp.phaseoli. Phaseollin was converted to 6a-hydroxyphaseollin by the pathogensB. cinerea andC. lindemuthianum, and this product was further metabolized by the latter fungus. 6a-Hydroxyphaseollin was less fungitoxic toB. cinerea. C. lindemuthianum was equally sensitive to both compounds. Phaseollin was not metabolized by the pathogensFusarium oxysporum f. sp.phaseoli andThielaviopsis basicola.  相似文献   

13.
14.
用PDA培养基平板法测定了0.4%OS-诱抗剂水剂对水稻纹枯病菌、小麦纹枯病菌、油菜菌核病菌、辣椒立枯病菌、瓜类绵腐病菌、黄瓜枯萎病菌的生物活性,其EC50值分别为34.56、59.33、33.17、85.92、91.91、122.87μg/mL,OS-诱抗剂对水稻纹枯病、油菜菌核病较好。高效液相色谱分析表明,经OS-诱抗剂处理后的植物提取液中酚类物质的种类和含量相对于对照有明显的变化,说明OS-诱抗剂对植物的防病作用可能是促使植物体内产生了酚类抗病物质。  相似文献   

15.
番茄茎叶提取物对8种植物病原菌的生物活性初步研究   总被引:16,自引:0,他引:16       下载免费PDF全文
采用6种溶剂对番茄茎叶进行平行提取,以葡萄白腐病菌、葡萄黑痘病菌、苹果腐烂病菌、苹果轮纹病菌、苹果斑点落叶病菌、棉花枯萎病菌、瓜类枯萎病菌和番茄早疫病菌为供试菌,对番茄不同提取液进行抑菌活性测定。结果表明,各溶剂提取液对特定病菌都有极好的抑制作用,对葡萄白腐病菌和苹果腐烂病菌的抑制率均为100%,对其它病菌也都有很好的活性。番茄茎叶的水提取液对供试8种病原菌的综合抑制效果最好,对葡萄白腐病菌、葡萄黑痘病菌和苹果腐烂病菌的抑制作用高达100%,对瓜类枯萎病菌抑菌效果最差也为67.74%。,因此,水应作为番茄茎叶农用抑菌活性物质提取的首选溶剂,石油醚可作为有机溶剂提取番茄茎叶农用抑菌活性物质的溶剂。  相似文献   

16.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   

17.
Understanding the distribution pattern of the Fusarium species can help prevent crop diseases and large yield losses. While several approaches have been used to control soil-borne pathogens, soil solarisation has shown promising results in managing these pathogens. The main objectives of this study were to: (i) describe the biogeography of Fusarium species in four different climatic zones in Iran and (ii) explain the effect of soil solarisation on main pathogenic Fusarium species in wheat grains, beans and date palms. A total of 12 sub-samples were collected from four different climatic zones including, Rasht (humid), Zanjan (semi-arid), Isfahan (extra-arid) and Ahwaz (arid). For precise identification, molecular-phylogenetic analyses of the species were also performed. From these four sites 17 Fusarium species were recovered. F. solani complex, F. oxysporum and F. equiseti were the only species found in all four regions; whereas F. compactum, F. sambucinum and F. fujikuroi were restricted to Ahwaz, Zanjan and Rasht, respectively. Furthermore, soil solarisation treatments were applied to F. pseudograminearum, F. solani and F. oxysporum, as the main cause of root rot pathogens and wilt disease of wheat, bean and date palm, respectively. After 6 weeks of soil solarisation application, the population densities of these species were decreased from 900 to 100 CFU g?1 in F. solani, from 600 to 50 CFU g?1 in F. oxysporum and from 550 to 0 CFU g?1 in F. pseudograminearum showing a promising result in controlling soil-borne pathogens. Mycogeography of Fusarium species and the effect of soil solarisation can help improve the management control strategies of these soil-borne fungi.  相似文献   

18.
Fusarium diseases of Liliaceae crops cause significant losses worldwide. Yet some Fusarium species are found in planta without causing disease or even in a symbiotic relationship with its host. In this study we identified and characterized the Fusarium species isolated from soil, and from healthy and diseased bulbs of Lilium longiflorum grown in New Jersey and Oregon in the United States. The predominant Fusarium species from the Oregon location were F. solani (74%) and F. oxysporum (20%), whereas F. concentricum (43%) and F. proliferatum (26%), both belonging to the Gibberella fujikuroi species complex (GFSC), were the most commonly isolated species from New Jersey. To our knowledge, this is the first report of F. concentricum associated with Liliaceae. All of the isolates were characterized with sequences of the internal transcribed spacer and translation elongation factor 1-alpha genes. The 24 GFSC isolates were further characterized with mating type, mating population, and mycotoxin analysis. Results showed that all GFSC isolates were MAT-2, suggesting that the populations may be asexually reproducing in the region examined. The majority of the GFSC isolates produced beauvericin. Enniatin A, B, B1 and fusaproliferin were produced by a few isolates. Enniatin A1 and fumonisins were not detected in any of the isolates. Although F. oxysporum and F. solani are well-known bulb pathogens, many isolates of F. oxysporum and F. solani, and all of the F. concentricum and F. proliferatum were isolated from asymptomatic bulbs, suggesting their endophytic association with lilies.  相似文献   

19.
甘草根腐病病原菌鉴定   总被引:10,自引:0,他引:10  
 甘草(Glycyrrhiza uralensis Fish.)别名甜草、蜜草、甜根子, 为豆科多年生草本植物, 以根与根茎入药, 具有补脾益气、清热解毒、祛痰止咳、缓急止痛、调和诸药之功效, 是我国临床常用的中药材, 也可用作食品添加剂。甘草主要分布在我国的内蒙古、甘肃和宁夏, 在青海、陕西、新疆、黑龙江、辽宁、吉林、河北、山西等地局部地区也有分布。宁夏盐池县是我国乌拉尔甘草的重要产区, 面积大、贮量多、品质好, 1995年被誉为“中国甘草之乡” [1]。近年来, 野生甘草遭到了大规模采挖, 甘草蕴藏量急剧减少, 目前主要通过人工种植来满足市场需求。随着甘草种植面积的不断扩大, 甘草病虫害日趋严重, 根腐病危害尤为突出, 直接影响甘草的产量和品质, 造成巨大经济损失。  相似文献   

20.
为明确引起甘肃省兰州百合主产区百合枯萎病的致病镰孢菌种类,对从百合主产区枯萎病罹病植株上分离纯化的4株镰孢菌株进行形态学鉴定、分子生物学鉴定以及致病性测定,同时利用电子显微镜对尖孢镰孢菌Fusarium oxysporum侵入百合鳞片后的细胞超微结构进行观察。结果表明:4株镰孢菌菌株经鉴定分别为尖孢镰孢菌、茄病镰孢菌F. solani、三线镰孢菌F. tricinctum和燕麦镰孢菌F. avenaceum。4株镰孢菌菌株的致病力由强到弱的顺序依次是尖孢镰孢菌、燕麦镰孢菌、茄病镰孢菌、三线镰孢菌;尖孢镰孢菌侵入后,鳞片细胞壁、细胞质膜和细胞核结构被破坏,细胞核附近出现大量线粒体,细胞中淀粉粒数量减少。表明尖孢镰孢菌是兰州百合枯萎病防治的重点防控对象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号