首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: The Guardian REAL‐Time is a continuous glucose‐monitoring system (CGMS) recently developed to provide instantaneous interstitial glucose concentrations; the system does not require a monitor being fixed to the animal. Hypothesis: The CGMS provides accurate and reproducible real‐time readings of glucose concentration in cats. Animals: Thirty‐two diabetic cats, 2 cats with suspected insulinoma, and 5 healthy cats. Methods: Prospective, observational study. CGMS accuracy was compared with a reference glucose meter at normal, high, and low blood glucose concentrations using error grid analysis. Reading variability of 2 simultaneously used CGMS was determined in diabetic cats by calculating correlation and percentage of concordance of paired data at different glycemic ranges. The time interval between increasing glycemia and a rise in interstitial fluid glucose measured by the CGMS was assessed in healthy cats receiving glucose IV; the time point of maximal increase in interstitial glucose concentrations was calculated. Results: The CGMS was 100, 96.1, and 91.0% accurate at normal, high, and low blood glucose concentrations. Measurements deviated from reference by ?12.7 ± 70.5 mg/dL at normal, ?12.1 ± 141.5 mg/dL at high, and ?1.9 ± 40.9 mg/dL at low glucose concentrations. Overall, paired CGMS readings correlated significantly (r= 0.95, P < .0001) and concordance was 95.7%. The median delay after IV administration of glucose to an increase in interstitial glucose was 11.4 minutes (range: 8.8–19.7 minutes). Conclusions and Clinical Importance: Although some readings substantially deviated from reference values, the CGMS yields reproducible results, is clinically accurate in cats with hyperglycemia and euglycemia, and is slightly less accurate if blood glucose concentrations are low. Rapidly increasing interstitial glucose after a glycemic rise suggests that the CGMS is suitable for real‐time measurement under clinical conditions.  相似文献   

2.
Objective – To compare biochemical parameters, neurologic changes, length of hospital stay, and clinical improvement in 3 groups of cats with diabetic ketosis/diabetic ketoacidosis (DK/DKA) prescribed varied doses of regular insulin as a continuous rate of infusion (CRI). Design – Retrospective study. Setting – University teaching hospital. Animals – Twenty‐nine client‐owned cats with DK/DKA prescribed a regular insulin CRI. Interventions – Cats were grouped as follows: 7 cats each in Group 1 and 2, (prescribed 1.1 and 2.2 U/kg/d, respectively), and 15 cats in Group 3 (prescribed increasing doses as needed). Measurements and Main Results – None of the groups received the total prescribed dose of insulin. The mean actual dose administered/kg/d ranged from 0.30 (0.21) to 0.87 (0.32) U/kg/d in Groups 1, 2, and 3. There was no difference in mean minimum blood glucose (BG) per 4 hours or change in BG from baseline per 4 hours between Groups 1 and 2 (P=0.63, 0.50). There was no difference between groups regarding the time required to reach a BG ≤13.9 mmol/L (250 mg/dL), serum phosphorus or potassium concentrations relative to baseline values (P=0.53, 0.90), length of time until urine or serum ketones were no longer detected (P=0.73), the animal commenced eating (P=0.24), or length of hospital stay (P=0.63). Four of the cats had declining mentation during hospitalization; there were no relationships between osmolality at presentation, either prescribed or administered insulin dose, and mentation changes. Three of the 4 cats with declining mentation survived. Twenty‐seven of the 29 cats (93%) survived to discharge. Conclusions – In this study, prescribing the published canine dose (2.2 U/kg/d) of regular insulin to cats with DK/DKA does not appear to increase the frequency of adverse neurologic or biochemical sequelae compared with cats that are prescribed the published cat dose (1.1 U/kg/d). The use of a sliding scale for determination of infusion rates significantly reduces the amount of insulin cats receive in this setting. Determination of whether adverse sequelae would occur more frequently if cats with DK/DKA received the full insulin prescribed doses of 1.1, 2.2, or >2.2 U/kg/d is warranted. Further controlled studies are necessary to determine if higher doses of insulin are associated with beneficial effects on morbidity or mortality.  相似文献   

3.
A continuous glucose monitoring system (CGMS) was evaluated in 14 cats with naturally occurring diabetes mellitus. The device measures interstitial fluid glucose continuously, by means of a sensor placed in the subcutaneous tissue. All cats tolerated the device well and a trace was obtained on 15/16 occasions. There was good correlation between the CGMS values and blood glucose concentration measured using a glucometer (r=0.932, P<0.01). Limitations to the use of the CGMS are its working glucose range of 2.2-22.2 mmol/l (40-400 mg/dl) and the need for calibration with a blood glucose measurement at least every 12 h. When compared to a traditional blood glucose curve, the CGMS is minimally invasive, reduces the number of venepunctures necessary to assess the kinetics of insulin therapy in a patient and provides a truly continuous glucose curve.  相似文献   

4.
Objective – To examine serum sodium, glucose, and tonicity in cats with diabetic ketosis. Design – Retrospective study. Setting – A university‐based referral hospital. Animals – Cats admitted to the ICU during the period 1998 to 2002 with a diagnosis of diabetic ketosis. Interventions – None. Routine clinical management of diabetes and associated conditions. Measurements – Serum biochemistry assessments. Main Results – Abnormalities of glucose, sodium and serum tonicity (ST) were common in the study group. Serum sodium but not glucose correlated closely with ST. A subset of cats treated with intravenous insulin and an isotonic sodium‐containing solution for 72 hours showed a significant decrease in glucose from admission values at 48 and 72 hours (but not at 24 hours). Serum sodium, potassium, and ST were not significantly different from admission values at any time over the 72‐hour period. However, the relative contribution of individual osmolytes varied over the course of treatment. Although glucose decreased >120% from admission values over the 72‐hour treatment period, the approximately 5% rise in serum sodium that occurred offset the osmotic effect of falling glucose and the overall ST change was <3%. Conclusions – The incidence of osmotic‐mediated neurologic complications during treatment of cats with diabetic ketosis is low in part because the minimal fluctuation in ST during treatment likely prevents the development of osmotic gradients between serum and central nervous system tissues. The use of isotonic sodium‐containing fluids in the treatment of feline diabetes acts to minimize large osmotic shifts by adding sodium to the serum compartment as the glucose concentration falls.  相似文献   

5.
The generation of a blood glucose curve is important for assessing the response to insulin therapy in diabetic dogs. Disadvantages of this technique include patient discomfort and the potential for missing transient hypo- or hyperglycaemic episodes. The aim of the current study was to evaluate a continuous glucose monitoring system (CGMS) for use in diabetic dogs. Interstitial fluid glucose concentrations were recorded in 10 diabetic dogs, every five minutes for up to 48 hours, using a subcutaneous sensor attached to the CGMS device. Blood glucose concentrations were measured simultaneously using a glucometer. The correlation between interstitial fluid and blood glucose values was 0.81 (P < 0.01). The largest discrepancies between the two sets of data were seen during the one- to three-hour period following feeding, suggesting that postprandial hyperglycaemia might not be reflected in the interstitial fluid. The authors conclude that the CGMS is a potentially valuable tool in the management of canine diabetic patients.  相似文献   

6.
The use and efficacy of continuous rate infusion (CRI) of regular insulin intravenously for the treatment of feline diabetic ketoacidosis was retrospectively evaluated. The study focused on the rate of glucose decline, time to resolution of inappetence, time to long-term injectable insulin, and length of hospital stay. Review of medical records from 2009 to 2011 identified 10 cases that met the inclusion criteria. Six cats were existing diabetics, 3 of whom had recent insulin changes. Five cats had concurrent diseases. The mean time to long-term injectable insulin was 55 hours. The mean length of hospitalization was 3.8 days. Five cats survived to discharge. In 5 patients, an insulin CRI permitted a short hospital stay and transition to long-term injectable insulin. Many cats with diabetic ketosis or diabetic ketoacidosis are prior diabetics with concurrent disease and/or a history of recent insulin changes.  相似文献   

7.
OBJECTIVE: To evaluate a continuous glucose monitoring system (CGMS) for use in dogs, cats, and horses. DESIGN: Prospective clinical study. Animals-7 horses, 3 cats, and 4 dogs that were clinically normal and 1 horse, 2 cats, and 3 dogs with diabetes mellitus. PROCEDURE: Interstitial glucose concentrations were monitored and recorded every 5 minutes by use of a CGMS. Interstitial glucose concentrations were compared with whole blood glucose concentrations as determined by a point-of-care glucose meter. Interstitial glucose concentrations were also monitored in 2 clinically normal horses after oral and i.v. administration of glucose. RESULTS: There was a positive correlation between interstitial and whole blood glucose concentrations for clinically normal dogs, cats, and horses and those with diabetes mellitus. Events such as feeding, glucose or insulin administration, restraint, and transport to the clinic were recorded by the owner or clinician and could be identified on the graph and associated with time of occurrence. CONCLUSIONS AND CLINICAL RELEVANCE: Our data indicate that use of CGMS is valid for dogs, cats, and horses. This system alleviated the need for multiple blood samples and the stress associated with obtaining those samples. Because hospitalization was not required, information obtained from the CGMS provided a more accurate assessment of the animal's glucose concentrations for an extended period, compared with measurement of blood glucose concentrations. Use of the CGMS will promote the diagnostic and research potential of serial glucose monitoring.  相似文献   

8.
Objective: To examine the relative contributions of sodium and glucose to serum effective osmolality and the presence of abnormalities of sodium and osmolality in diabetic dogs and cats. Design: Retrospective study. Setting: A university‐based referral hospital. Animals: Diabetic dogs (n=14) and cats (n=13) consecutively admitted to the hospital over a 6‐month period. Interventions: None Measurements: Serum biochemistry assessments. Main results: The mean glucose concentration was higher in diabetic dogs than in diabetic cats. Total osmolality (OsmT), effective osmolality (OsmE), and the concentrations of sodium, potassium, blood urea notrogen, bicarbonate, and creatinine did not differ between species. Sodium abnormalities and hyperosmolality affected 44% and 81%, respectively, of the study group. However, marked hyperosmolality (OsmE>330 mOsm/L) was found in only 33% of the study group. Serum sodium correlated closely with OsmE in dogs and cats but serum glucose did not correlate with the OsmE in either species. Subsets of dogs (n=10) and cats (n=7) with diabetic ketosis (DK) were examined separately. DK dogs had significantly lower sodium concentrations than DK cats and the proportion of DK dogs with hyponatremia was nearly 3 times greater than DK cats. Severe hyperosmolality (OsmE>330 mOsm/L) was more common in DK cats than DK dogs. Conclusions: In diabetic dogs and cats, sodium, not glucose, was correlated with serum OsmE and marked elevation in pretreatment OsmE is uncommon. Compensatory reduction in serum sodium may be 1 mechanism for blunting changes in OsmE in the presence of marked hyperglycemia.  相似文献   

9.
O bjectives : To compare the results of urine and plasma ketone dip test in a group of diabetic cats with possible ketosis or ketoacidosis, using laboratory plasma β-hydroxybutyrate measurements as the gold standard.
M ethods : According to clinical examinations, plasma β-hydroxybutyrate measurements and venous blood gas analysis, 54 cats with diabetes mellitus were classified as non-ketotic (n=3), ketotic (n=40) or ketoacidotic (n=11). Plasma and urine acetoacetate concentrations were determined using urine reagent strips.
R esults : Although there was a significant positive correlation between blood and urine ketone measurements (r=0·695, P<0·001), the results differed significantly (Z=−3·494, P<0·001). Using the differential positive rates, the best cut-off value to detect cats with ketoacidosis was 1·5 mmol/l for urine and 4 mmol/l for plasma. The sensitivity/specificity was 82/95 per cent for urine and 100/88 per cent for plasma, respectively.
C linical S ignificance : The urine and plasma ketone dip tests have a different diagnostic accuracy, and results have to be interpreted differently. Because of its high sensitivity, the plasma ketone dip test performs better than the urine ketone dip test to identify cats with impending or established ketoacidosis.  相似文献   

10.
The aim of this study was to evaluate the accuracy of serum beta-hydroxybutyrate (beta-OHB) measurements for the diagnosis of diabetic ketoacidosis (DKA) in dogs. One hundred sixteen diabetic dogs were prospectively enrolled in the study: 18 insulin-treated (IT) diabetic dogs that had a positive urine ketone test and 88 untreated, newly diagnosed diabetic dogs. Venous blood gas tensions and pH, serum glucose and urea nitrogen (SUN), and electrolyte (Na+, Cl-, and K+) and urine acetoacetate (AA) concentrations were measured concurrently with serum beta-OHB concentrations. On the basis of laboratory findings, the patients were assigned to I of 3 groups: diabetic ketoacidosis (n = 43); diabetic ketosis (DK, n = 41); and nonketotic diabetes (NDK, n = 31). Serum beta-OHB concentrations differed significantly (P < .001) among the study groups. Although marked differences in beta-OHB concentrations were found, a considerable overlap exists between the distributions of dogs with DK and those with DKA. The overall accuracy of beta-OHB determination as a diagnostic test for DKA, determined by the area under the receiver operating characteristic (ROC) curve, was 0.92. In the 1.9- to 4.8-mmol/L range, serum beta-OHB determination sensitivity varied from 100 to 35.7%, whereas specificity varied from 39 to 100%. The cutoff value of 3.8 mmol/L showed the best equilibrium between specificity (95%), sensitivity (72%), and likelihood ratio (14.8). We concluded that the quantitative measurement of serum beta-OHB may be a potential tool for diagnosing and monitoring ketosis and ketoacidosis in diabetic dogs.  相似文献   

11.
Blood glycosylated hemoglobin (GHb) concentration was quantified in 84 healthy cats, 9 cats with stress-induced hyperglycemia, 37 cats with newly diagnosed diabetes mellitus, and 122 diabetic cats treated with insulin or glipizide. Diabetic control was classified as good or poor in insulin-treated or glipizide-treated cats based on review of history, physical examination findings, changes in body weight, and measurement of blood glucose concentrations. Blood GHb concentration was determined using an affinity chromatography assay. Mean blood GHb concentration was similar for healthy normoglycemic cats and cats with transient, stress-induced hyperglycemia, but was significantly (P < .001) higher in untreated diabetic cats when compared with healthy normoglycemic cats. Mean blood GHb concentration was significantly (P < .001) higher in 84 cats with poorly controlled diabetes mellitus when compared with 38 cats in which the disease was well controlled. Mean blood GHb concentration decreased significantly (P < .01) in 6 cats with untreated diabetes mellitus after insulin and dietary treatment. A similar significant (P < .01) decrease in mean blood GHb concentration occurred in 7 cats with poorly controlled diabetes mellitus after diabetic control was improved by an increase in insulin dosage from 1.1 ± 0.9 to 1.4 ± 0.6 U/kg/ 24 h and by feeding a diet containing increased fiber content and in 6 cats with transient diabetes mellitus 8.2 ± 0.6 weeks after discontinuing insulin treatment. There was a significant (P< .01) stress-induced increase in mean fasting blood glucose concentration and mean blood glucose concentration for 12 hours after administration of insulin or glipizide but no change in mean blood GHb concentration in 5 docile diabetic cats 12.2 ± 0.4 weeks after the cats became fractious as a result of frequent hospitalizations and blood samplings. Results of this study suggest that evaluation of blood GHb concentration may be a clinically useful tool for monitoring glycemic control of diabetes in cats.  相似文献   

12.
OBJECTIVE: To compare blood glucose (BG) concentrations measured with a portable blood glucose meter in blood samples obtained with a marginal ear vein (MEV) nick technique, from a peripheral venous catheter, and by direct venipuncture in healthy cats and cats with diabetes mellitus. DESIGN: Prospective study. ANIMALS: 1 0 healthy cats and 11 cats with diabetes mellitus. Procedure-On day 1, blood samples were collected every hour for 10 hours by the MEV nick technique and from a peripheral venous catheter. On day 2, blood samples were collected every hour for 10 hours by the MEV nick technique and by direct venipuncture of the medial saphenous vein. RESULTS: For all cats, mean BG concentration for samples collected by the MEV nick technique was not significantly different from mean concentration for samples obtained from the peripheral venous catheter. For healthy cats, mean BG concentration for samples collected by the MEV nick technique was not significantly different from mean concentration for samples obtained by direct venipuncture. For cats with diabetes mellitus, mean BG concentration for samples collected by the MEV nick technique was significantly different from mean concentration for samples obtained by direct venipuncture; however, for the range of concentrations examined, this difference was not clinically important. Conclusions and Clinical Relevance: Results suggest that for the range of concentrations examined, the MEV nick technique is a reasonable alternative to venous blood collection for serial measurement of BG concentrations in cats.  相似文献   

13.
Background: This study describes the efficacy of a new protamine zinc recombinant human insulin (PZIR) preparation for treating diabetic cats. Objective: To evaluate effects of PZIR on control of glycemia in cats with newly diagnosed or poorly controlled diabetes mellitus. Animals: One hundred and thirty‐three diabetic cats 120 newly diagnosed and 13 previously treated. Methods: Prospective, uncontrolled clinical trial. Cats were treated with PZIR twice daily for 45 days. Control of glycemia was assessed on days 7, 14, 30, and 45 by evaluation of change in water consumption, frequency of urination, appetite, and body weight, serum fructosamine concentration, and blood glucose concentrations determined 1, 3, 5, 7, and 9 hours after administration of PZIR. Adjustments in dosage of PZIR were made as needed to control glycemia. Results: PZIR administration resulted in a significant decrease in 9‐hour mean blood glucose (199 ± 114 versus 417 ± 83 mg/dL, X± SD, P < .001) and serum fructosamine (375 ± 117 versus 505 ± 96 μmol/L, P < .001) concentration and a significant increase in mean body weight (5.9 ± 1.4 versus 5.4 ± 1.5 kg, P= .017) in 133 diabetic cats at day 45 compared with day 0, respectively. By day 45, polyuria and polydipsia had improved in 79% (105 of 133), 89% (118 of 133) had a good body condition, and 9‐hour mean blood glucose concentration, serum fructosamine concentration, or both had improved in 84% (112 of 133) of the cats compared with day 0. Hypoglycemia (<80 mg/dL) was identified in 151 of 678, 9‐hour serial blood glucose determinations and in 85 of 133 diabetic cats. Hypoglycemia causing clinical signs was confirmed in 2 diabetic cats. Conclusions and Clinical Relevance: PZIR is effective for controlling glycemia in diabetic cats and can be used as an initial treatment or as an alternative treatment in diabetic cats that do not respond to treatment with other insulin preparations.  相似文献   

14.
Objective – To establish a reference interval for intra‐abdominal pressure (IAP) measured by urinary bladder catheterization in normal cats and determine if IAP is affected by observer variation, volume of saline instillation before measurement, or subject variables of gender, positioning, body condition score, and sedation. Design – Prospective experimental study. Setting – Private referral center. Animals – Twenty healthy adult cats. Interventions – Sedation with butorphanol, midazolam, and propofol for catheterization of the urinary bladder and measurement of IAP. Measurements and Main Results – A 5‐Fr red rubber urinary catheter was placed under sedation, and IAP was determined using a water manometer with the cats in right lateral and sternal recumbency. Three readings were taken in each position by 2 observers. The cats were allowed to recover with the urinary catheter in place, and IAP was measured in each cat while they were awake in right lateral and sternal recumbency. Conclusions – In this population of clinically healthy cats, median (interquartile range) IAP taken over all measurements was 7.00 cm H2O (5.23–8.83 cm H2O). There was no statistical difference between observers or subject gender. Factors associated with a statistically significant increase in IAP were right lateral compared with sternal recumbency (P=0.002), being awake compared with sedated (P<0.001), having a higher body condition score (P=0.01 and 0.001), instillation of a higher volume of saline into the bladder for measurement (P<0.001), and struggling during awake measurements (P<0.001).  相似文献   

15.
We investigated the effects of beta‐glucans (Saccharomyces cerevisiae) ingestion on metabolic parameters of Wistar rats receiving high‐fat diet. The experimental period was divided into two stages: in the first one, the animals were divided into two groups containing 12 animals each. The first group received commercial feed and the second received high‐fat diet containing 20% of pork fat during 60 days. At the end of this period, body weight, blood glucose and Lee index were assessed. In the second stage, those 24 animals were redivided into four groups: (C) – control diet; (CB) – control diet and treated with Beta‐glucan (BG); (O) – obese animals and (OB) – obese animals treated with BG. Animals from groups CB and OB received 30 mg/kg of BG dissolved in saline solution by gavage. Animals from groups C and O received only saline solution for 28 days. The design used was totally randomized in 2 × 2 factorial scheme. Data were submitted to analysis of variance (anova ). Animals from OB group showed inferior levels (p < 0.05) of total cholesterol (13.33%), triacylglycerols (16.77%) and blood glucose (23.97%) when compared to the animals from group O. The use of BG has provided smaller increase in Lee index (p < 0.05), without promoting alteration in feed and water consumption, organs weight, HDL‐C, LDL+VLDL‐C, carcass composition, villus/crypt ratio, and pancreas, kidney and stomach histology. BG from S. cerevisiae promoted beneficial metabolic effects in rats receiving high‐fat diet.  相似文献   

16.
The glucagon-like peptide-1 mimetic exenatide has a glucose-dependent insulinotropic effect, and it is effective in controlling blood glucose (BG) with minimal side effects in people with type 2 diabetes. Exenatide also delays gastric emptying, increases satiety, and improves β-cell function. We studied the effect of exenatide on insulin secretion during euglycemia and hyperglycemia in cats. Nine young, healthy, neutered, purpose-bred cats were used in a randomized, cross-over design. BG concentrations during an oral glucose tolerance test were determined in these cats previously. Two isoglycemic glucose clamps (mimicking the BG concentration during the oral glucose tolerance test) were performed in each cat on separate days, one without prior treatment (IGC) and the second with exenatide (1 μg/kg) injected subcutaneously 2 h before (ExIGC). BG, insulin, and exenatide concentrations were measured, and glucose infusion rates were recorded and compared in paired tests between the two experiments. After exenatide injection, insulin serum concentrations increased significantly (2.4-fold; range 1.0- to 9.2-fold; P = 0.004) within 15 min. This was followed by a mild decrease in BG concentration and a return of insulin concentration to baseline despite a continuous increase in serum exenatide concentrations. Insulin area under the curve (AUC) during ExIGC was significantly higher than insulin AUC during IGC (AUC ratio, 2.0 ± 0.4; P = 0.03). Total glucose infused was not significantly different between IGC and ExIGC. Exenatide was detectable in plasma at 15 min after injection. The mean exenatide concentration peaked at 45 min and then returned to baseline by 75 min. Exenatide was still detectable in the serum of three of five cats 8 h after injection. No adverse reactions to exenatide were observed. In conclusion, exenatide affects insulin secretion in cats in a glucose-dependent manner, similar to its effect in other species. Although this effect was not accompanied by a greater ability to dispose of an intravenous glucose infusion, other potentially beneficial effects of exenatide on pancreatic β cells, mainly increasing their proliferation and survival, should be investigated in cats.  相似文献   

17.
Incretin hormones are secreted from the intestines in response to specific nutrients. They potentiate insulin secretion and have other beneficial effects in glucose homeostasis. We aimed to study the incretin effect in cats and to compare the effect of oral glucose, lipids, or amino acids on serum concentrations of insulin, total glucose-dependent insulinotropic peptide (GIP) and total glucagon-like peptide 1 (GLP-1). Ten healthy cats were used in a repeated measures design. Glucose, lipid, or amino acids were administered through nasoesophageal tubes on separate days. Blood glucose (BG) concentrations were matched between experiments by measuring BG every 5 min and infusing glucose intravenously at a changing rate. Intravenous glucose infusion with no prior treatment served as control. The incretin effect was estimated as the difference in insulin area under the curve (AUC) after oral compared with intravenous glucose. Temporal changes and total amount of hormone secretions were compared between treatment groups with the use of mixed models. Total glucose infused (TGI) at a mean dose of 0.49 g/kg resulted in slightly higher BG compared with 1 g/kg oral glucose (P = 0.038), but insulin concentrations were not significantly different (P = 0.367). BG and the TGI were not significantly different after the 3 oral challenges. Total GIP AUC was larger after lipids compared with amino acids (P = 0.0012) but GIP concentrations did not increase after oral glucose. Insulin and GIP concentrations were positively correlated after lipid (P < 0.001) and amino acids (P < 0.001) stimulations, respectively, but not after oral glucose stimulation. Total GLP-1 AUC was similar after all three oral stimulations. Insulin and GLP-1 concentrations were positively correlated after glucose (P = 0.001), amino acids (P < 0.001), or lipids (P = 0.001) stimulations. Our data indirectly support an insulinotropic effect of GIP and GLP-1. Potentiation of insulin secretion after oral glucose is minimal in cats and is mediated by GLP-1 but not GIP.  相似文献   

18.
Background: The combined glucose‐insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Hypothesis: Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Animals: Seven mature, obese ponies. Methods: Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, IV) and insulin (0.1 U/kg, IV) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand‐held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Results: Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand‐held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Conclusions and Clinical Importance: Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT.  相似文献   

19.
Use of continuous glucose monitoring in veterinary medicine is gaining popularity. Through use of a commercially available continuous glucose monitor system, insights into daily glucose changes in dogs and cats are achievable. The continuous glucose monitoring system measures glucose concentrations in the interstitial fluid of the subcutaneous space by use of a small, flexible probe. When placed in the subcutaneous tissue, the probe is connected to a recording device that is attached to the animal and records the interstitial fluid glucose concentration every 5 minutes (288 readings per 24 hours). Once attached and properly calibrated, the instrument can remain in place for several days, hospitalization of the patient is not necessary, and the normal daily routine of the animal can be maintained. The data from the recording device are then downloaded and a very detailed picture of the interstitial fluid glucose concentration over that time period can be obtained. Subcutaneous interstitial fluid glucose concentrations have a good correlation to blood glucose concentrations within a defined range. The continuous glucose monitoring system has distinct advantages over traditional blood glucose curves and is a valuable tool for managing diabetic dogs and cats. In addition, other clinical uses for continuous glucose monitoring are being developed. This review is designed to outline the technology behind the continuous glucose monitoring system, describe the clinical use of the instrument, provide clinical examples in which it may be useful, and discuss future directions for continuous glucose monitoring in dogs and cats.  相似文献   

20.
Objective of this study was to demonstrate the ubiquitous presence of glucose in urine of euglycemic cats by a highly sensitive glucose assay. The local electronic database was searched for results of quantitative urine glucose measurements in cats. A total of 325 feline urine glucose measurements were identified, of which 303 (93%) had been submitted by one of the co‐authors working in a near‐by small animal practice. After the exclusion of patients with kidney disease (n = 60), hyperthyroidism (n = 15), diabetes mellitus (n = 11), multiple diseases (n = 9) or steroid treatment (n = 3), as well as serial measurements (n = 87) and outliers (n = 8), the final study population consisted of 132 cats. Urine creatinine concentration was unavailable in five patients. Whereas all but one cat had glucose concentrations above the detection limit of the assay (0.11 mmol/L, Gluco‐quant Enzyme Kit/Roche Diagnostics), no positive glucose dipstick test result (Combur 9‐Test, Roche Diagnostics) was observed. The median (range) of urinary glucose concentration and the glucose‐to‐creatinine ratio (UGCR) was 0.389 (<0.11–1.665) mmol/L and 0.0258 (0.007–0.517) respectively. The UGCR was not affected by age, gender, breed or leukocyturia, whereas cats with hematuria had slightly higher values. Data show that so‐called “basal glucosuria” is present in the majority of cats and by no means diagnostic for diabetes mellitus or renal glucosuria. This has to be considered when using bio‐analytical methods with a low limit of quantification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号