首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the functional role of enchytraeid worms (Oligochaeta) in organic upland soils experimentally, because that role of these animals is little known. We made microcosms of intact soil cores cut from two depths, 0–4 cm and 4–8 cm, of a Cambic Stagnohumic Gley from the Moor House National Nature Reserve (UK). Enchytraeids were added to half of the microcosms, resulting in four treatments: litter (L), litter + enchytraeids (L + E), soil (S) and soil + enchytraeids (S + E). Triplicates of each treatment were established, and all microcosms (60) were then incubated in the dark at 15°C, arranged in a fully randomized design. The experiment ran over 110 days, with five destructive harvests at days 10, 25, 50, 75 and 110, when microbial measurements (soil respiration and biomass C) as well as measures of decomposition (nutrient concentration in leachates) were made. Enchytraeids almost doubled the availability of organic carbon (measured as dissolved organic carbon in soil leachates) in the surface (0–4 cm) microcosms only. There were no effects of enchytraeids on the release of inorganic N or P from either soil horizon, although the release of ammonium and phosphate was correlated with the number of enchytraeids in the microcosms. The depth from which the soil was taken exerted a strong influence on nutrient leaching, with almost six times more ammonium and four times more carbon being leached from the surface (0–4 cm) layer than from the more decomposed (4–8 cm) horizon. There was little nitrate leaching from any of the treatments, with only one‐quarter as much nitrate leached from the surface (0–4 cm) as from the subsurface (4–8 cm) horizon. Enchytraeids had no detectable effect on microbial biomass, but they increased microbial respiration by 35% in the surface (0–4 cm) horizon. Because they enhanced microbial activity in this horizon we suggest that enchytraeids indirectly drive the processes of decomposition and nutrient mineralization in organic upland soils.  相似文献   

2.
3.
4.
黑碳添加对土壤有机碳矿化的影响   总被引:10,自引:0,他引:10  
通过室内培养试验,向土壤中分别添加不同温度制备的黑碳,热解温度分别为350℃(T350)、600℃(T600)和850℃(T850),研究了黑碳添加对土壤有机碳矿化的影响。结果表明,不同温度条件制备的黑碳在15℃和25℃培养条件下,土壤CO2释放速率总的趋势是前期分解速率快,后期缓慢。在整个培养过程中(112天),随着培养时间的延长,土壤CO2释放速率下降趋势逐渐降低,CO2释放速率相对值的大小随着培养温度的的升高而增大。在不同温度培养条件下,添加黑碳后土壤CO2-C累计量均是T350>T600>T850,T350土壤CO2-C累计量最高分别为415.26 mg/kg和733.82 mg/kg。添加不同黑碳后,土壤有机碳矿化增加率存在极显著差异(p<0.01),表明不同温度制备的黑碳对土壤有机碳矿化的影响显著。  相似文献   

5.
施用石灰改良酸性土壤是常用的农艺措施之一。施用石灰影响土壤理化性质,进而影响土壤有机碳(Soil Organic Carbon,SOC)矿化。而SOC矿化与土壤肥力保持和有机碳库的大小存在紧密联系。因此,明晰施用石灰对酸性土壤有机碳矿化的影响具有重要的理论和现实意义。该研究以2种母质的酸性水稻土为对象,在50%、90%和130%土壤最大田间持水量(Water Holding Capacity,WHC)条件下添加和不添加白云石,再进行为期45 d的室内培养试验,探讨白云石和水分对SOC矿化的影响。研究结果表明,添加白云石显著影响2种土壤有机碳矿化速率,但白云石添加和水分的交互作用不显著。土壤含水量较低时(50% WHC),2种土壤有机碳矿化均受到抑制。在较高土壤含水量情况下(90%~130% WHC),白云石添加和水分的共同作用对SOC矿化的影响因土壤质地不同而异,淹水条件下(130% WHC)棕红壤有机碳矿化量高于湿润条件(90% WHC),而红壤中的情况正好相反。白云石添加和水分均显著影响SOC累计矿化量,但二者交互作用仅在棕红壤中显著。添加白云石后,2种土壤pH值随着水分含量的增加而提高;土壤含水量较低时(50% WHC),土壤pH值即可达到或接近目标值(pH值6.5)。这些结果表明,在评估施用白云石对SOC矿化的影响时,需要考虑土壤含水量和土壤本身的性质,以便为农业生产实践中合理施用白云石提供指导和建议。  相似文献   

6.
A temporary decline in tree growth has often been observed after liming in coniferous forests poor in N but seldom in forests rich in N. To test the hypothesis that the decline was caused by decreases in N supply, C and N mineralization were estimated in incubated soil: (1) after liming in the laboratory, and (2) after earlier liming in the field. Liming increased the C mineralization rate in needle litter, nor humus and 0 to 5 cm mineral soil for a period of 40 to 100 days at 15°C. After that period, liming had no effect on the CO2 evolution rate in materials poor in N (C:N ratios 30 to 62) but increased the CO2 evolution rate in materials rich in N (C:N ratios 24 to 28). When liming induced nitrification, the CO2 evolution rate was reduced. Liming resulted in lower net N mineralization rate in needle litter and mor humus. The reduction was more pronounced when NH4 + was the only inorganic form than when NO3 ? was the predominant form. The reason is probably that chemical fixation of NH3 and amino compounds increases with increasing pH. Because of the fixation, the incubation technique most likely underestimated the mineralized N available to the roots. Taking this underestimation into consideration, liming initially reduced the N release in the litter layer. In the other soil layers, liming increased the N release in soils rich in N and had only small effects in soils poor in N. For the total N supply to the roots in the litter, humus and 0 to 5 cm mineral soil layers, liming caused a slight reduction in soils poor in N and a slight increase in soils rich in N. Data on tree growth corresponded with these results.The hypotheses that tree growth depressions can be caused by reduced N supply after liming and that tree growth increases can be caused by increased N supply after liming thus seem reasonable.  相似文献   

7.
A temporary decline in tree growth has often been observed after liming in coniferous forests poor in N but seldom in forests rich in N. To test the hypothesis that the decline was caused by decreases in N supply, C and N mineralization were estimated in incubated soil: (1) after liming in the laboratory, and (2) after earlier liming in the field. Liming increased the C mineralization rate in needle litter, mor humus and 0 to 5 cm mineral soil for a period of 40 to 100 days at 15°C. After that period, liming had no effect on the CO2 evolution rate in materials poor in N (C:N ratios 30 to 62) but increased the CO2 evolution rate in materials rich in N (C:N ratios 24 to 28). When liming induced nitrification, the CO2 evolution rate was reduced. Liming resulted in lower net N mineralization rate in needle litter and mor humus. The reduction was more pronounced when NH 4 + was the only inorganic form than when NO 3 ? was the predominant form. The reason is probably that chemical fixation of NH3 and amino compounds increases with increasing pH. Because of the fixation, the incubation technique most likely underestimated the mineralized N available to the roots. Taking this underestimation into consideration, liming initially reduced the N release in the litter layer. In the other soil layers, liming increased the N release in soils rich in N and had only small effects in soils poor in N. For the total N supply to the roots in the litter, humus and 0 to 5 cm mineral soil layers, liming caused a slight reduction in soils poor in N and a slight increase in soils rich in N. Data on tree growth corresponded with these results. The hypotheses that tree growth depressions can be caused by reduced N supply after liming and that tree growth increases can be caused by increased N supply after liming thus seem reasonable.  相似文献   

8.
Oilseed‐derived biochar, a by‐product of pyrolysis for biodiesel production, is richer in aliphatic compounds than the commonly studied wood‐derived biochar, affecting both its mineralization in soil and its interaction with native soil organic carbon (nSOC). Here, we investigated the soil C sequestration potential of three different oilseed biochars derived from C3 plant material: soyabean, castor bean and jatropha cake. The chemical composition of these biochars was determined by elemental analysis (CHN) and 13C NMR spectroscopy. The cumulative CO2 efflux from 30‐day laboratory incubations of biochar mixed with a sandy soil containing nSOC from C4 plants was measured as a proxy for mineralization rate. The relative contribution of each source to CO2 production was calculated based on the 13C‐signatures of total CO2 efflux and the source materials (soil and biochars). Our results showed that: (i) castor bean biochar contained relatively large amounts of aliphatic compounds, resulting in a greater mineralization rate than soyabean and jatropha biochars; (ii) CO2 efflux from the soil‐biochar mixtures originated mostly from the biochars, suggesting that these biochars contain rapidly decomposable compounds; and (iii) all three oilseed biochars decelerated nSOC mineralization. This negative priming effect appeared to be caused by different factors. We conclude that oilseed biochars have the potential to increase soil C stocks directly and increase soil C sequestration indirectly in the short term through negative priming of nSOC mineralization.  相似文献   

9.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

10.
There have been increasing efforts to understand the dynamics of organic carbon (OC) associated with measurable fractions of bulk soil. We compared the decomposition of native OC (native C) with that of an added substrate (glucose) on physically separated fractions of a diverse suite of soils. Five soil orders were selected from four contrasting climate zones (Mollisol from temperate, Ultisol and Oxisol from tropics, Andisol from sub-arctic, and Gelisol from arctic region). Soils from the A horizon were fractionated into particulate OC (POC) and mineral-associated OC (MOC) by a size-based method. Fractions were incubated at 20 °C and 50 % water-holding capacity in the dark after the addition of unlabeled d-glucose (0.4 mg C g?1 fraction) and U–14C glucose (296 Bq g?1 fraction). Respiration of glucose 14C indicated 64 to 84 % of added glucose 14C which was respired from POC and 62 to 70 % from MOC within 150 days of incubation, with more than half of the cumulative respiration occurring within 4 days. Native C respiration varied widely across fractions: 12 to 46 % of native C was respired from POC and 3 to 10 % was respired from MOC fractions. This suggested that native C was more stabilized on the MOC than on the POC, but respiration from the added glucose was generally similar for MOC and POC fractions. Our study suggests a fundamental difference between the behavior of freshly added C and native C from MOC and POC fractions of soils.  相似文献   

11.
长期施肥下三种旱作土壤有机碳含量及其矿化势比较研究   总被引:1,自引:0,他引:1  
[目的]通过研究长期施肥下旱作农田土壤有机碳含量和有机碳矿化势的变化及其影响因素,以期明确影响土壤有机碳贮存的可控因素,为进一步增加土壤有机碳贮存和农田可持续利用提供理论依据.[方法]选取黑龙江省、河南省和江西省的黑土、潮土和红壤长期定位试验的不施肥处理(CK)、单施化肥处理(CF)和有机肥化肥配施处理(MCF),测定...  相似文献   

12.
匡崇婷  江春玉  李忠佩  胡锋 《土壤》2012,44(4):570-575
通过室内培育试验,研究了添加生物质炭对江西红壤水稻土有机碳矿化和微生物生物量碳、氮含量的影响。结果表明:红壤有机碳矿化速率在培育第2天达最大值后迅速降低,培养7天后下降缓慢并趋于平稳;添加生物质炭降低了土壤有机碳的矿化速率和累积矿化量,培养结束时,不加生物质炭的对照处理中有机碳的累积矿化量分别比添加0.5%和1.0%生物质炭的处理高10.0%和10.8%。此外,生物质炭的加入显著提高了土壤微生物生物量,添加0.5%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高111.5%~250.6%和11.6%~97.6%,添加1.0%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高58.9%~243.6%和55.9%~110.4%。相同处理中,干旱的水分条件下(40%田间持水量)微生物生物量要高于湿润的水分条件(70%田间持水量)。同时,添加0.5%和1.0%的生物质炭使土壤代谢熵分别降低2.4%和26.8%,微生物商减少了43.7%和31.7%。  相似文献   

13.
Paddy soils are subjected to periodically changing redox conditions. In order to understand better the redox control on long‐term carbon turnover, we assessed carbon mineralization and dissolved organic carbon (DOC) of paddy topsoils sampled along a chronosequence spanning 2000 years of rice cultivation. Non‐paddy soils were used as references. We exposed soils to alternating redox conditions for 12 weeks in incubation experiments. Carbon mineralization of paddy soils was independent of redox conditions. Anoxic conditions caused increasing DOC concentrations for paddy soils, probably because of desorption induced by increasing pH. We assume desorption released older, previously stabilized carbon, which then was respired by a microbial community well adapted to anoxic conditions. This assumption is supported by the 14C signatures of respired CO2, indicating larger mineralization of older carbon under anoxic than under oxic conditions. The increasing DOC concentrations under anoxic conditions did not result in an equivalent increase in carbon mineralization, possibly because of little reducible iron oxide. Therefore, net DOC and CO2 production were not positively related under anoxic conditions. The overall 20–75% smaller carbon mineralization of paddy soils than of non‐paddy soils resulted from less respiration under oxic conditions. We conclude that carbon accumulation in paddy as well as in other wetland soils results from a microbial community well adapted to anoxic conditions, but less efficient in mineralizing carbon during transient oxic periods. Carbon accumulation might be even larger when mineralization under anoxic conditions is restricted by a lack of alternative electron acceptors.  相似文献   

14.
The sorption of phosphate (P) by four strongly acid Fijian soils from 0.01 M CaCl2 decreased with increasing pH up to pH 5.5–6.0 and then increased again. The initial decrease in P sorption with increasing pH appears to result from an interaction between added P, negative charge, and the electrostatic potential in the plane of sorption. The results of a sorption study, involving KCl or CaCl2 of varying concentrations as the background electrolyte and using Nadroloulou soil incubated with KOH or Ca(OH)2, suggested that the increase in P sorption at pH values > 6.0 was caused by the formation of insoluble Ca-P compounds. For some soils this is consistent with the results of an isotopic-exchange study in which incubation with lime caused marked reductions in the amounts of exchangeable P at high pH.  相似文献   

15.
Addition of organic manure over thousands of years has resulted in the development of very fertile soils in parts of the Loess Plateau in Northwest China. This region also suffers from serious soil erosion. For that reason, afforestation of arable soils has taken place. The dynamics of soil organic matter in these soils affected by a very specific management and by land use changes is largely unknown. Therefore, we measured C mineralization in a 35-days incubation experiment and analyzed amounts and properties of water-extractable organic carbon (WEOC) in 12 topsoils of this region. The soils differed in land use (arable vs. forest) and in amounts of added organic manure. Afforestation of arable soils resulted in a distinct stabilization of organic C as indicated by the smallest C mineralization (0.48 mg C g−1 C d−1) and the highest C content (2.3%) of the studied soils. In the soils exposed to intensive crop production without regular addition of organic manure we found the largest C mineralization (0.85 mg C g−1 C d−1) and the lowest contents of organic C (0.9%). Addition of organic manure over a time scale of millennia resulted in high organic C contents (1.8%) and small C mineralization (0.55 mg C g−1 C d−1). The content of WEOC reflected differences in C mineralization between the soils quite well and the two variables correlated significantly. Water-extractable organic C decreased during C mineralization from the soil illustrating its mainly labile character. Carbon mineralization from soils was particularly large in soils with small specific UV absorbance of WEOC. We conclude that amounts and properties of WEOC reflected differences in the stability of soil organic C. Both afforestation of arable land and the long-term addition of organic manure may contribute to C accumulation and stabilization in these soils.  相似文献   

16.
《Pedobiologia》2014,57(3):161-169
C mineralization and aggregate stability directly depend upon organic matter and clay content, and both processes are influenced by the activity of microorganisms and soil fauna. However, quantitative data are scarce. To achieve a gradient in C and clay content, a topsoil was mixed with a subsoil. Single soils and the soil mixture were amended with 1.0 mg maize litter C g soil−1 with and without endogeic earthworms (Aporrectodea caliginosa). The differently treated soils were incubated for 49 days at 15 °C and 40% water holding capacity. Cumulative C mineralization, microbial biomass, ergosterol content and aggregate fractions were investigated and litter derived C in bulk soil and aggregates were determined using isotope analyses. Results from the soil mixture were compared with the calculated mean values of the two single soils. Mixing of soil horizons differing in carbon and clay content stimulated C mineralization of added maize residues as well as of soil organic matter. Mixing also increased contents of macro-aggregate C and decreased contents of micro-aggregate C. Although A. caliginosa had a stimulating effect on C mineralization in all soils, decomposition of added litter by A. caliginosa was higher in the subsoil, whereas A. caliginosa decreased litter decomposition in the soil mixture and the topsoil. Litter derived C in macro-aggregates was higher with A. caliginosa than with litter only. In the C poor subsoil amended with litter, A. caliginosa stimulated the microbial community as indicated by the increase in microbial biomass. Furthermore, the decrease of ergosterol in the earthworm treated soils showed the influence of A. caliginosa on the microbial community, by reducing saprotrophic fungi. Overall, our data suggest both a decrease of saprotrophic fungi by selective grazing, burrowing and casting activity as well as a stimulation of the microbial community by A. caliginosa.  相似文献   

17.
 This study examines the effect of soil P status and N addition on the decomposition of 14C-labelled glucose to assess the consequences of reduced fertilizer inputs on the functioning of pastoral systems. A contrast in soil P fertility was obtained by selecting two hill pasture soils with different fertilizer history. At the two selected sites, representing low (LF) and high (HF) fertility status, total P concentrations were 640 and 820 mg kg–1 and annual pasture production was 4,868 and 14,120 kg DM ha–1 respectively. Soils were amended with 14C-labelled glucose (2,076 mg C kg–1 soil), with and without the addition of N (207 mg kg–1 soil), and incubated for 168 days. During incubation, the amounts of 14CO2 respired, microbial biomass C and 14C, microbial biomass P, extractable inorganic P (Pi) and net N mineralization were determined periodically. Carbon turnover was greatly influenced by nutrient P availability. The amount of glucose-derived 14CO2 production was high (72%) in the HF and low (67%) in the LF soil, as were microbial biomass C and P concentrations. The 14C that remained in the microbial biomass at the end of the 6-month incubation was higher in the LF soil (15%) than in the HF soil (11%). Fluctuations in Pi in the LF soil during incubation were small compared with those in HF soil, suggesting that P was cycling through microbial biomass. The concentrations of Pi were significantly greater in the HF samples throughout the incubation than in the LF samples. Net N mineralization and nitrification rates were also low in the LF soils, indicating a slow turnover of microorganisms under limited nutrient supply. Addition of N had little effect on biomass 14C and glucose utilization. This suggests that, at limiting P fertility, C turnover is retarded because microbial biomass becomes less efficient in the utilization of substrates. Received: 18 October 1999  相似文献   

18.
The field experiments on calcareous sodic Vertisols were conducted on farmer’s fields in Purna valley of Vidarbha region of Maharashtra. The treatments comprised of different green manures (GMs); crop residues (CRs); gypsum. The chemical and biological properties after 2 years experiment showed that the application of gypsum recorded significant drop in pH and exchangeable sodium percentage (ESP) as compared to organic amendments. But later has outperformed with respect to biological activities viz., dehydrogenase activity (DHA) and microbial respiration and carbon sequestration by enhancing soil organic carbon (SOC), soil organic carbon (SOC) stock, soil microbial biomass carbon (SMBC) and labile carbon pool (POXC). Among the different organic amendments the application of dhaincha improved SMBC by 90%, microbial respiration by 104%, POXC by 59% and DHA by 265% as compare to control. High ESP of these soils showed negative relationship with microbial respiration and POXC (r = 0.48 and r = 0.43, p = < 0.05). While addition of biomass showed positive relationship with SMBC, microbial respiration, POXC and DHA (r = 0.93, r = 0.81, r = 0.83 and r = 0.91 p = < 0.01). The results of study showed green manuring in sodic black soil found to be alternative choice to gypsum, which besides gradual reclamation also enhance biological properties and carbon sequestration.  相似文献   

19.
添加葡萄糖对不同肥力黑土氮素转化的影响   总被引:6,自引:0,他引:6  
氮是作物生长必需的大量营养元素,增施化学氮肥,是农业生产采取的主要增产措施之一。我国的氮肥消费量已占世界总消费量的约30%,但我国农业中氮素的生产效率趋于下降,而带来的农业环境污染则趋于加重。提高氮素利用率,降低其对环境的负面影响,在保障粮食安全的同时兼顾生  相似文献   

20.
Vermicomposts from the wine and distillery industry containing spent grape marc (V1), biosolid vinasse (V2) and alperujo (V3) from the olive‐oil industry were investigated as organic amendments to a sandy and a clay soil with low organic carbon (OC) contents (≤1%). The sorption‐desorption process was studied in batch experiments using diuron as a non‐ionic herbicide model. The effect of soil and vermicompost characteristics, the solution's ionic strength and incubation time of amended soils on the sorption process was studied. The addition of vermicompost changed soil properties and enhanced sorption capacity by two‐ to four‐fold. The Koc variability showed that exogenous OC composition influenced diuron sorption. Vermicompost V1, which had the largest OC and lignin content, recorded the largest sorption increment. Vermicompost V3, which had the greatest dissolved organic carbon content and a high degree of humification, made the smallest contribution to sorption. Sorption was also dependent on extraneous calcium in the solution. The incubation of amended soils reduced diuron sorption efficiency except with V3. Pyrolysis‐gas chromatography (Py‐GC) analysis was a useful tool to characterize the vermicomposts and to understand the variation of diuron sorption constants after vermicompost incubation. This research encourages the use of vermicompost from agro‐industrial wastes as a sustainable means to minimize the side effects of neutral herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号