首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of crop residues alone (Cr+) or combined with inorganic fertilizer (FCr+) sewage sludge (SS) and humentos (H) on soil properties were studied in a five-season wheat–guar rotation. Incorporation of Cr+ and SS significantly decreased pH by 5–9%. Highest organic carbon (OC) was observed in SS plots, whereas Cr+ resulted in values threefold that of the control. The added effect of Cr+ (46%) combined with fertilizer on total nitrogen (TN) was greater than Cr+ by 28%. The fraction of total residue N mineralized was 71%, whereas net N mineralized in Cr+, SS, H and FCr+ plots at 0–20 and 20–40 cm depths were 39.8, 52.3, 11.4, 66.7 mg kg?1 and 21.2, 27.9, 8.2, 41.2 mg kg?1, respectively. Integrated application of Cr+ with fertilizer had a synergistic effect on P content (3.49–3.69 units), but soil levels has never exceeded 13 mg P kg ?1. Sole Cr+ significantly increased topsoil cation-exchange capacity (CEC) compared with the control treatment (9.39–21.59%). Application of SS, FCr+ and Cr+ significantly increased water-holding capacity and decreased bulk density by 9–15% and 8–9%, respectively, suggesting that such practice can restore the productivity of degraded soils and improve crop yields.  相似文献   

2.
A five-season experiment was initiated to study the effects of the recycling of some organic residues on a soil–crop system of a guar–wheat rotation in a sandy clay loam soil located in the semi-arid tropics of Sudan. Treatments included: incorporation of crop residues alone after harvest (Cr+), with (FCr+) or without (FCr?) inorganic fertilizer, sewage sludge (SS) and humentos (H). Grain yield of wheat in FCr+ and Cr+ treatments was significantly higher than that obtained in FCr? and control plots by ~22?62% and 116?119%, respectively. When crop residues were incorporated with inorganic fertilizer, the priming effect of crop residues on straw yield (106%) was almost double that of the priming effect of inorganic fertilizer (56%). The sustainable yield index of wheat straw dry matter for the control, crop residue, humentos, inorganic fertilizer, combined fertilizer and crop residue and sewage sludge was 28, 27, 8, 35, 21 and 38%, respectively. In general, N, P and K of straw dry matter (SDM) was in the order of FCr+ > FCr? > SS > Cr+> H > C. The findings suggest that repeated incorporation of crop residues with inorganic fertilizer and applications of SS could both sustain wheat performance in the dryland ecosystems.  相似文献   

3.
Biochar application to soil has significant potential as a climate change mitigation strategy, due to its recalcitrant C content and observed effect to suppress soil greenhouse gas emissions such as nitrous oxide (N2O). Increased soil aeration following biochar amendment may contribute to this suppression.Soil cores from a Miscanthus X. giganteus plantation were amended with hardwood biochar at a rate of 2% dry soil weight (22 t ha−1). The cores were incubated at three different temperatures (4, 10 and 16 °C) for 126 days, maintained field moist and half subjected to periodic wetting events. Cumulative N2O production was consistently suppressed by at least 49% with biochar amendment within 48 h of wetting at 10 and 16 °C. We concluded that hardwood biochar suppressed soil N2O emissions following wetting at a range of field-relevant temperatures over four months. We hypothesised that this was due to biochar increasing soil aeration at relatively high moisture contents by increasing the water holding capacity (WHC) of the soil; however, this hypothesis was rejected.We found that 5% and 10% biochar amendment increased soil WHC. Also, 10% biochar amendment decreased bulk density of the soil. Sealed incubations were performed with biochar added at 0–10 % of dry soil weight and wetted to a uniform 87% WHC (78% WFPS). Cumulative N2O production within 60 h of wetting was 19, 19, 73 and 98% lower than the biochar-free control in the 1, 2, 5 and 10% biochar treatments respectively. We conclude that high levels of biochar amendment may change soil physical properties, but that the enhancement of soil aeration by biochar incorporation makes only a minimal contribution to the suppression of N2O emissions from a sandy loam soil. We suggest that microbial or physical immobilisation of NO3 in soil following biochar addition may significantly contribute to the suppression of soil N2O emissions.  相似文献   

4.
Upland soils have been identified as a major CO2 source induced by human activities, such as fertilizer applications. The aim of this study is to identify the characteristics of soil CO2 emission and carbon balance in cropland ecosystems after continuous fertilizer applications over decades. The measurements of soil surface CO2 fluxes throughout the years of 2009 and 2010 were carried out based on a fertilization experiment (from 1990) in a double cropping system rotated with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) in upland soil in southern China. Four treatments were chosen from the experiment for this study: no-fertilizer application (SR), nitrogen–phosphorus–potassium chemical fertilizers (NPK), NPK plus pig manure (NPKM) and pig manure alone (M). Results showed that the mean value of soil CO2 fluxes from 08:00 to 10:00 am could represent its daily mean value in summer period (June–August) and that from 09:00 am to 12:00 pm for the rest season of a year. Soil temperature and moisture combined together could explain 70–83% of variations of CO2 emission. Annual cumulative soil CO2 fluxes in the treatments with manure applications (8.2 ± 0.8 and 11.0 ± 1.2 t C ha−1 in 2009, and 7.9 ± 0.9 and 11.1 ± 1.2 t C ha−1 in 2010 in NPKM and M, respectively) were significantly higher than those in the treatments with non-manure addition (2.5 ± 0.2 and 3.4 ± 0.2 t C ha−1 in 2009, and 2.1 ± 0.2 and 3.7 ± 0.3 t C ha−1 in 2010 in SR and NPK, respectively). However, the treatments with manure applications represented a carbon sink in the soil (carbon output/input ratio < 1.0), which demonstrated potential for carbon sequestration.  相似文献   

5.
A field experiment was conducted for 3 crop years (July‐June) at the Indian Agricultural Research Institute, New Delhi to study the effects of Sesbania and cowpea green manuring (GM) and incorporation of mungbean residues after harvesting grain, Leucaena loppings, FYM and wheat straw incorporation before planting rice and application of 0,40,80 and 120 kg N ha?1 to rice on the soil organic carbon (SOC), alkaline permanganate oxidizable N (APO‐N), 0.5 M sodium bicarbonate extractable P (SBC‐P) and 1N ammonium acetate exchangeable K (AAE‐K) in surface 0–15 cm soil after the harvest of rice and wheat grown in sequence. Green manuring and addition of organic residues prevented the decline in SOC. On the other hand addition of N fertilizer tended to decrease SOC after rice harvest. On the contrary application of green manures, organic residues, FYM and fertilizer N increased APO‐N, which indicates the benefit of these treatments to a more labile soil organic N pool. Also application of green manures, organic residues, FYM and fertilizer N increased SBC‐P. Not much change was observed in AAE‐K by the treatments applied.  相似文献   

6.
The present study was carried out on pot experiments with rice (Oryza sativa L. cv. Wuyujing 7) and winter wheat (Triticum aestivum L. cv. Yangmai 6) rotation in a sandy and a clayey soil fertilized with 15N-labeled ammonium sulfate (AS) and 15N-labeled rabbit feces so as to study the mechanisms of reduction of fertilizer N loss by organic fertilizers. The treatments included: (1) control without any N fertilizer application; (2) fertilization with 15N-labeled AS (IF); (3) fertilization with labeled rabbit feces (OF); (4) fertilization with either 40% 15N-labeled rabbit feces and 60% unlabeled AS (IOF1) or (5) 40% unlabeled rabbit feces and 60% 15N-labeled AS (IOF2). In the rice season, the IOF treatments compared to the IF treatment decreased the percentage of lost fertilizer N from the sandy and clayey soils, whereas it increased the percentage of fertilizer N, present as mineral N and microbial biomass N (MBN). During the second season, when soils were cropped to winter wheat, the IOF treatments in comparison with the IF or OF treatment increased mineral N and MBN contents of soils sampled at tillering, jointing, and heading stages, and such increases were derived from the organic N fertilizer in the sandy soil and from the inorganic N fertilizer in the clayey soil. The increased MBN in the IOF treatments was derived from inorganic fertilizers applied both soils. Therefore, in the IOF treatment, during the rice season, the organic N increased the immobilization of inorganic N in MBN, while the inorganic N fertilizer applied to both soils stimulated the uptake of organic N and the organic N fertilizer increased the uptake of inorganic N by winter wheat; the inorganic N increased the recovery of organic N in the plant-soil system after harvesting the winter wheat.  相似文献   

7.
Increasing organic carbon (OC) stocks in soils reduce atmospheric CO2, but may also cause enhanced N2O emissions. The objective of this study was to determine whether there are any differences in N2O and CO2 emissions from sandy arable soils with different soil OC and total nitrogen stocks due to the annual application of either farmyard manure (S-FYM) or mineral fertilizer (S-MIN) over 27 years. A laboratory incubation was performed to test the short-term effects of the application of different fertilizers [farmyard manure (FYM), KNO3 (MIN) and biogas waste (BW)] on N2O and CO2 emissions. The CO2 emission rates indicated that OC availability in the soil was higher after BW application than after FYM application. N2O emission for 53 days following fertilizer application amounted to 0.01% (MIN), 0.21% (FYM) and 24% (BW) of the total amount of N applied. The high emissions induced by BW were attributed to the combination of a high availability of OC and ammonium in the fermented waste. Fertilization history, which caused higher soil OC stocks in S-FYM, did not influence N2O emissions. The results suggest that characterization of C and N pools in organic fertilizers is required to assess their impact on N2O emissions.  相似文献   

8.
The present work aims at evaluating the effect of cycloheximide at concentrations of between 0.5 and 5mgg–1 on N2O and NO3 production in two slightly alkaline soils, sampled from deciduous woodland and arable cultivation. In the first experiment, peptone was used as the “inducing substrate” for heterotrophic activity, and soil was incubated with cycloheximide (at different concentrations) and/or acetylene (1mll–1) to block induced eukaryotic protein synthesis and ammonia monooxygenase activity, respectively. Peptone addition stimulated N2O and NO3 production significantly in woodland soil, whereas arable soil showed no significant N2O emissions and low NO3 production. Low cycloheximide concentrations drastically reduced N2O emissions in woodland soil, suggesting a potential role of fungi in N2O emissions. However, acetylene was equally effective in blocking N2O emissions and part of NO3 production, so that a possible role of ammonia monooxygenase in an organic-inorganic pathway of N nitrification in fungal metabolism can be hypothesized. A second experiment was carried out on the woodland soil to check if low cycloheximide concentrations had non-target biocidal effects on soil microorganisms. Attention was focused on the range of concentrations which had reduced N2O emission in the woodland soil. The results suggested that at concentrations of cycloheximide between 0.5 and 2mgg–1 any biocidal effect on microbial biomass was negligible in the first 48h; therefore only selective inhibition of protein synthesis could be expected. The whole nitrifier population seemed to be particularly sensitive to cycloheximide concentrations higher than 2.5mgg–1. Received: 4 July 1997  相似文献   

9.
 The spatial in situ variability of soil N2O emissions (measured by micro-chambers, radius 0.033 m), N2O content, water content, NO3 , NH4 +, inorganic carbon and organic carbon concentrations was investigated on a silt loam by means of geostatistical methods and nonparametric statistics. The sampling grid consisted of different spacings between sampling points which ranged from 0.1 m to 50 m. There were no significant correlations between N2O emissions and soil parameters (P>0.1) when all the sampling points were considered. In the centre of the grid a "hot area" was localized with significantly higher N2O emissions, and NO3 and NH4 + concentrations (P≤0.05). Within this hot area the N2O soil content significantly correlated with N2O emissions (P≤0.05). When semiovariograms were computed without data of the hot area samples, N2O emissions showed a weak spatial correlation (range: 4.3 m). The calculations including all data led to pure nugget effects for all parameters except for soil water content (range >40 m) and N2O soil content (range 16.4 m). Received: 19 December 1997  相似文献   

10.
Assessing effects of organic fertilizer applications on N2O emissions is of great interest because they can cause higher N2O emissions compared to inorganic fertilizers for a given amount of added nitrogen (N). But there are also reports about enhanced N2O reduction to climate-neutral elemental N2 after application of organic manures to soils. Factors controlling the N2O/(N2O + N2) product ratio of denitrification are interrelated, and also the ratio is difficult to study because of limitations in N2 flux measurements. In this study, we investigated N2O and N2 emissions from soil treated with organic fertilizers with different C/N ratios. An N2O isotopomer approach combined with conventional N2O and N2 flux measurements was employed to study underlying microbial pathways.A grassland soil was amended with anaerobic digestate (AD) from food waste digestion (low C/N ratio) or cattle slurry (CS; high C/N ratio), respectively, adjusted to 90% WFPS, and incubated for 52 days under helium–oxygen atmosphere (10% O2) using a soil incubation system capable of automated N2O, N2, and CO2 measurements. N2O isotopomer signatures, i.e. the δ18O and SP values (site preference between 15N at the central and the peripheral position in the N2O molecule), were determined by Isotope Ratio Mass Spectrometry and used to model and subsequently estimate the contribution of bacterial denitrification and autotrophic nitrification to N2O production. For this approach the direct determination of emitted N2 is essential to take isotope effects during N2O reduction to N2 into account by correcting the measured isotope signatures for isotope effects during N2O reduction using previously determined fractionation factor ranges.The addition of both organic fertilizers to soil drastically increased the rate of gaseous N emissions (N2O + N2), probably due to the effects of concurrent presence of nitrate and labile C on the denitrification rate. In the initial phase of the experiment (day 1 to ∼15), gaseous N emissions were dominated by N2 fluxes in soils amended with organic manures; meanwhile, N2O emissions were lower compared to untreated Control soils, but increased after 15–20 days relative to the initial fluxes, especially with CS. Extremely low N2O, but high N2 emissions in the initial phase suggest that reduction of N2O to N2 via denitrification was triggered when the soil was amended with organic fertilizers. In contrast in the untreated Control, N2O release was highest during the initial phase. Total N2O release from AD treated soil was similar to Control, while N2O from CS treated soil was considerably higher, indicating that denitrification was triggered more by the high labile carbon content in CS, while the cumulative N2O/(N2O + N2) product ratio and thus N2O reduction were similar with both organic fertilizers.The results of the N2O source partitioning based on the isotopomer data suggest that about 8–25% (AD) and 33–43% (CS) of the cumulated N2O emission was due to nitrification in organically amended soil, while in the untreated Control nitrification accounted for about 5–16%. The remaining N2O production was attributed mainly to denitrification, while the poor model fit for other source pathways like fungal denitrification suggested their contribution to be of minor importance. The observed rather distinct phases with predominance first of denitrification and later of nitrification may help developing mitigation measures by addressing N2O source processes individually with appropriate management options. The observation of relatively large shares of nitrification-derived N2O is surprising, but may possibly be related to the low soil pH and will require further investigation.The determination of N2 production is essential for this isotopomer-based source partitioning approach, but so far only applicable under laboratory conditions. The results of this study indicate that the combination of N2O δ18O and SP values is very useful in obtaining more robust source estimates as compared to using SP values alone.  相似文献   

11.
The intensive conversion from woodland to tea plantation in subtropical China might significantly change the potential supply processes and cycling of inorganic Nitrogen (N). However, few studies have been conducted to investigate the internal N transformations involved in the production and consumption of inorganic N and N2O emissions in subtropical soils under tea plantations. In a 15N tracing experiment, nine tea fields with different plantation ages (1-y, 5-y and 30-y) and three adjacent woodlands were sampled to investigate changes in soil gross N transformation rates in humid subtropical China. Conversion of woodland to tea plantation significantly altered soil gross N transformation rates. The mineralization rate (MNorg) was much lower in soils under tea plantation (0.53–0.75 mg N kg−1 d−1) than in soil sampled from woodland (1.71 mg N kg−1 d−1), while the biological inorganic N supply (INS), defined as the sum of organic N mineralized into NH4+ (MNorg) and heterotrophic nitrification (ONrec), was not significantly different between soils under woodland and tea plantation, apart from soil under 30-y tea plantation which had the largest INS. Interestingly, the contribution of ONrec to INS increased from 19.6% in soil under woodland to 65.0–82.4% in tea-planted soils, suggesting ONrec is the dominant process producing inorganic N in tea-planted soils. Meanwhile, the conversion from woodland to tea plantation destroyed soil NO3 retention by increasing ONrec, autotrophic nitrification (ONH4) and abiotic release of stored NO3 while decreasing microbial NO3 immobilization (INO3), resulting in greater NO3 production in soil. In addition, long-term tea plantation significantly enhanced the potential release of N2O. Soil C/N was positively correlated with MNorg and INO3, suggesting that an increase in soil C/N from added organic materials (e.g. rice hull) is likely to reduce the increased production of NO3 in the soils under tea plantation.  相似文献   

12.
Grassland ecosystems in south-eastern Australia are important for dairy and livestock farming. Their productivity relies heavily on water availability, as well as the ecosystem services provided by soil microbial communities including carbon and nutrient cycling. Management practices such as compost application are being encouraged as a means to improve both soil water holding capacity and fertility, thereby buffering against the impacts of increasing climate variability. Such buffering consists of two complementary processes: resistance, which measures the ability of an ecosystem to maintain community structure and function during a period of stress (such as drying); and resilience, which measures the ability of an ecosystem to recover community structure and function post-stress. We investigated the effects of compost on the resistance and resilience of the grassland soil ecosystem under drying and drying with rewetting events, in a terrestrial model ecosystem. Overall, compost addition led to an increase in soil moisture, greater plant available P and higher plant δ15N. Soil C:nutrient ratios, mineral N content (NH4+ and NO3) and soil microbial PLFA composition were similar between amended and unamended soils. Rainfall treatment led to differences in soil moisture, plant above-ground and below-ground biomass, plant δ15N, soil mineral N content (NH4+ and NO3) and microbial biomass C, N and P composition but had no effects on soil C:nutrient ratios, plant available P and soil microbial PLFA composition. There was little interaction between rainfall and compost. Generally, the soil microbial community was resistant and resilient to fluctuations in rainfall regardless of compost amendment. However, these properties of the soil microbial community were translated to resilience and not resistance in soil functions. Overall, the results below-ground showed much greater response to rainfall than compost amendment. Water was the key factor shaping the soil microbial community, and nutrients were not strong co-limiting factors. Future projections of increasing rainfall variability will have important below-ground functional consequences in the grassland, including altered nutrient cycling.  相似文献   

13.
This study aimed to elucidate the response of diversity and activity of soil invertebrates to elevated soil metal concentrations that were a result of sewage sludge application. Field sampling of soil invertebrates was carried out from 2002 to 2004 at an experimental site established in 1982 to test the effects on crop production of metal contamination from sewage sludge applications with elevated concentrations of zinc (Zn), copper (Cu) and nickel (Ni) with certain treatments exceeding the current UK statutory limits for the safe use of sludge on land. At metal concentrations within the limits, none of the invertebrates sampled showed adverse effects on their abundance or overall community diversity (from Shannon–Weiner index). At concentrations above the limits, individual taxa showed sensitivity to different metals, but overall diversity was not affected. Earthworm abundance was significantly reduced at total Cu concentrations at and above 176 mg kg?1, while nematode and enchytraeid abundances were sensitive to Cu and high Zn concentrations. Correspondingly, litter decomposition was lower in Zn and Cu treatments although there was no direct relationship between decomposition and soil invertebrate abundance or diversity. Such enduring changes in both soil biodiversity and biological activity around the current UK regulatory limits warrant further investigation to determine whether they indicate detrimental damage to soil functioning over the long‐term.  相似文献   

14.
The potential of modified spring barley crops with improved nitrogen (N) use efficiency to reduce nitrogen (N) leaching and to increase soil organic carbon (SOC) storage was assessed at the regional scale. This was done using simulation model applications designed for reporting according to the Helcom (Helsinki Commission) and Kyoto protocols. Using model simulations based on modified crops N dynamics and SOC were assessed for three agro-ecological regions (latitudes ranging 55°20′–60°40′ N) in Sweden over a 20-year period. The modified N use properties of spring barley were implemented in the SOILNDB model (simulating soil C, N, water and heat, and plant N dynamics) by changing the parameters for root N uptake efficiency and plant N demand within a range given by previous model applications to different crops. A doubling of the daily N uptake efficiency and increased N demand (by ca 30%) reduced N leaching by 24%–31%, increased plant N content by 9%–12%, depending on region. The effects of the modified crop on SOC was simulated with the ICBM model, resulting in an increased SOC content (0–25 cm depth) by 57–79 kg?C?ha?1?y?1. The results suggest that a modified crop might reduce N leaching from spring barley area, in a range similar to the targets of relevant environmental protection directives, a result which held more in the northern than southern regions. The simulated SOC increase on a hectare basis was highest for the central region and least for the most northern region. For the total agricultural area the share of spring barley area was small and more crops would need to be modified to reach the emission reduction targets.  相似文献   

15.
Freezing and thawing of soils may affect the turnover of soil organic matter and thus the losses of C and N from soils. Here we review the literature with special focus on: (i) the mechanisms involved, (ii) the effects of freezing temperature and frequency, (iii) the differences between arable soils and soils under natural vegetation, and (iv) the hypothesis that freeze‐thaw events lead to significant C and N losses from soils at the annual scale. Changes in microbial biomass and populations, root turnover and soil structure might explain increased gaseous and solute fluxes of C and N following freeze‐thaw events, but these mechanisms have seldom been addressed in detail. Effects of freeze‐thaw events appear to increase with colder frost temperatures below 0°C, but a threshold value for specific soils and processes cannot be defined. The pool of C and N susceptible to freeze‐thaw events is rather limited, as indicated by decreasing losses with short‐term repeated events. Elevated nitrate losses from soils under alpine and/or arctic and forest vegetation occurred only in the year following exceptional soil frost, with greatest reported losses of about 13 kg N ha?1. Nitrate losses are more likely caused by reduced root uptake rather than by increased N net mineralization. N2O emissions from forest soils often increased after thawing, but this lasted only for a relatively short time (days to 1–2 months), with the greatest reported cumulative N2O emissions of about 2 kg N2O‐N ha?1. The emissions of N2O after freeze‐thaw events were in some cases substantially greater from arable soils than from forest soils. Thus, freeze‐thaw events might induce gaseous and/or solute losses of N from soils that are relevant at the annual time scale. While a burst of CO2 after thawing of frozen soils is often found, there is strong evidence that, at the annual time scale, freeze‐thaw cycles either have little effect or will even reduce soil C losses as compared with unfrozen conditions. On the contrary, a milder winter climate with fewer periods of soil frost may result in greater losses of C from soils that are presently influenced by extended frost periods.  相似文献   

16.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   

17.
Due to their high abundance and ubiquitous existence, microbes are considered to be efficient colonisers of newly established habitats. To shed light on the dispersal mechanisms of soil microbes, a controlled microcosm experiment was established. In these microcosms, the dispersal of microbes from a source humus patch to originally sterile humus patches (embedded in a mineral soil matrix) was followed for 16 months, applying 16S and 18S ribosomal DNA-based PCR-DGGE molecular methods. Specifically, the role of enchytraeid worms and habitat (humus) corridors as possible facilitators of microbe dispersal was studied. The results showed that enchytraeid worms function efficiently as vectors for horizontal dispersal of saprophytic fungi in soil. Some of the fungi also proved to disperse through the corridors by vegetative growth, although this dispersal was inefficient as compared to dispersal with the enchytraeids. Virtually no saprophytic fungi were able to disperse through the mineral soil matrix in the absence of both enchytraeid worms and corridors. Unlike soil fungi, the dispersal of soil bacteria was not affected by any of the studied factors. The results of the present experiment provide direct evidence of the crucial role of soil fauna in aiding the horizontal dispersal of soil fungi. The role of enchytraeids as a functionally important species in boreal forest soils is further emphasized, since bringing microbes into contact with new resources is likely to enhance the rate of decomposition in soils.  相似文献   

18.
In Mediterranean ecosystems, forest fires are a common phenomenon. They involve the transformation of vegetation and litter, leaving charred residues and so influencing the carbon cycle by changing (a) the amounts of soil organic matter and (b) the proportions within it of pools with differing stability. In addition to affecting C cycles, fires also affect the amounts of N within soil organic matter, and its availability.  相似文献   

19.
We studied the relationship between plant and soil animal communities by geostatistical analysis in a piedmont forest close to Novorossiysk (Southern Russia). Vegetation on the slope of a hill was an oak-ash-hornbeam forest, while the vegetation on the foot of the hill was a maple-ash-hornbeam forest. Two plots were studied each including both slope and foot habitats. On every plot samples collected formed a grid of 10 × 5 units with a 5 m distance between them. Soil macroinvertebrates were hand-sorted from the samples, and several soil parameters (soil, pebble, and litter mass, soil moisture) were measured.The analysis did not reveal coincidence between the boundaries of plant and soil animal communities on the bend of the hill. Soil animal communities of the plots were dominated by woodlice, diplopods, and insect larvae, reaching an abundance of 680–990 individuals m2 throughout the plots. Number of taxonomic groups per sample and overall animal abundance in the bend were the highest in both plots, whilst these parameters on the slope were the lowest. Variograms and maps of spatial distribution indicated that the boundary between soil animal communities was situated further up on the slope than the vegetation boundary. The size of the animal community was smaller than the size of plots sampled, what probably explained the lack of coincidence between the boundaries. There was a significant correlation between distribution of litter mass and parameters of soil animal communities, which was modulated by depth of soil layer and soil moisture. Soil parameters were more important for explaining boundaries between soil animal communities than plant communities in the forest considered.  相似文献   

20.
UK emissions of sulphur dioxide decreased by 94% between 1970 and 2010 and are projected to decrease by another 50% by 2020 as coal fired power stations are decommissioned. We used the Community Multiscale Air Quality model to create maps of sulphur (S) deposition to assess the impact of these forecast decreases in S emissions on net S deposition to crops in England and Wales. Currently, average S deposition, net of S leaching, varies little between the UK regions, being greatest in Yorkshire and Humberside (Y&H), at ca. 5–6 kg/ha S, and least in Wales, at ca. 3–4 kg/ha S. However, even in Y&H S deposition is no more than 25% of S uptake by cereals and only ca. 10% of S uptake by oilseed rape (OSR). By 2020, net S deposition is predicted to decrease by between 30 and 60% and will be no more than 15% of S uptake by cereal crops and <10% of S uptake by OSR. We conclude that, with the exception of a few localities, net S deposition is currently making only a minor contribution to crop S requirements and this small contribution will continue to decline. We recommend S be applied at the rates currently advised, as either mineral fertilizer or livestock manures (or a combination of both), to all crops and grass grown on sandy soils or in areas of >375‐mm overwinter rainfall. The need for S fertilizer appears to be greatest for grass swards cut more than once.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号