首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of soil water repellency distribution, of factors affecting its occurrence and of its hydrological effects stems primarily from regions with a distinct dry season, whereas comparatively little is known about its occurrence in humid temperate regions such as typified by the UK. To address this research gap, we have examined: (i) water repellency persistence (determined by the water drop penetration time method, WDPT) and degree (determined by the critical surface tension method, CST) for soil samples (0–5, 10–15 and 20–25 cm depth) taken from 41 common soil and land‐use types in the humid temperate climate of the UK; (ii) the supposed relationship of soil moisture, textural composition and organic matter content with sample repellency; and (iii) the bulk wetting behaviour of undisturbed surface core samples (0–5 cm depth) over a period of up to 1 week. Repellency was found in surface samples of all major soil textural types amongst most permanently vegetated sites, whereas tilled sites were virtually unaffected. Repellency levels reached those of the most severely affected areas elsewhere in the world, decreased in persistence and degree with depth and showed no consistent relationship with soil textural characteristics, organic matter or soil moisture contents, except that above a water content of c. 28% by volume, repellency was absent. Wetting rate assessments of 100 cm3 intact soil cores using continuous water contact (–20 mm pressure head) over a period of up to 7 days showed that across the whole sample range and irrespective of texture, severe to extreme repellency persistence consistently reduced the maximum water content at any given time to well below that of wettable soils. For slightly to moderately repellent soils the results were more variable and thus hydrological effects of such repellency levels are more difficult to predict. The results imply that: (i) repellency is common for many land‐use types with permanent vegetation cover in humid temperate climates irrespective of soil texture; (ii) supposedly influential parameters (texture, organic matter, specific water content) are poor general predictors of water repellency, whereas land use and the moisture content below which repellency can occur seem more reliable; and (iii) infiltration and water storage capacity of very repellent soils are considerably less than for comparable wettable soils.  相似文献   

2.
斥水程度对脱水土壤水分特征曲线的影响   总被引:2,自引:3,他引:2  
为研究斥水程度对土壤水分特征曲线的影响,该文基于滴水穿透时间法,人工配置7种斥水程度的黏壤土(L0~L6)和6种斥水程度的砂土(S0~S5),用高速离心机测定其土壤水分特征曲线,应用van Genuchten-Mualem(VG)模型进行拟合,得出VG模型水力参数。结果表明:在同一吸力条件下,斥水黏壤土的含水率比斥水砂土的高;随着斥水程度增加,在相同吸力情况下,土壤含水率随斥水程度增大而减小;斥水黏壤土的残余含水率随着斥水程度增加而减小,斥水砂土S0~S3的残余含水率没有差异,S4、S5的残余含水率显著减小;斥水黏壤土和砂土进气值的对数与斥水剂添加量呈负线性相关;随着斥水程度增加,田间持水率减小,凋萎系数没有明显差异,重力水增加,有效水和易有效水减小,易利用水比例随着斥水程度增加而减小;对于斥水黏壤土,微孔隙(0.3~5μm)和小孔隙(5~30μm)含量随着斥水程度的增加明显减小,土壤空隙(≥100μm)随着斥水程度的增加急剧增加;对于斥水砂土,中等孔隙(30~75μm)的含量随斥水程度的增加明显增加。该研究成果可为斥水土壤的入渗、蒸发和数值模拟提供理论支持。  相似文献   

3.

Purpose

Application of olive mill wastewater (OMW) to soil may cause positive or negative effects. The present study aims at a better understanding of the fate of organic matter brought into soil by OMW application under different environmental conditions.

Materials and methods

Single OMW application to soil was conducted in spring, dry summer, summer with irrigation, and in winter. Two days and 18–24 months after the application, soil samples from two depths were analyzed for thermal soil organic matter (SOM) properties, total organic carbon, water-extractable dissolved soil organic carbon, and its specific ultraviolet absorbance at 254 nm.

Results and discussion

After winter and irrigated summer treatments, OMW was largely leached from the upper horizon within 2 days. Application in spring and summer dry initially increased the thermolabile fraction and the calorific value of SOM, however, in a different degree due to different transport, transformation, and immobilization mechanisms. At the long term, SOM content was still elevated after summer dry treatment. The reduction of the thermostable fraction in spring treatment indicates a priming effect of the labile OMW constituents.

Conclusions

Application in winter or with irrigation cannot be recommended for the investigated site. Under hot and dry conditions, SOM content increased most persistently due to stronger mineral-organic interactions. Favorable conditions for biodegradation during OMW application in spring reduced the effects on SOM quantity in the long term. However, a possible priming effect and the persistence of changes in thermal properties need to be further investigated for repeated applications.
  相似文献   

4.
The heat generated during wildfires often leads to increases in soil water repellency. Above a critical heating threshold, however, its destruction occurs. Although the temperature thresholds for repellency destruction are relatively well established, little is known about the specific changes in the soil organic matter that are responsible for repellency destruction. Here we report on the analysis of initially water repellent surface soil samples (Dystric Cambisol, 0–5 cm depth) by transmission Fourier Transform Infrared (FTIR) spectroscopy analysis before and after destruction of its water repellency by heating to 225 °C in order to investigate heating-induced changes in soil organic matter (SOM) composition. Although assignment of absorption bands is made difficult by overlapping of some bands, it was possible to distinguish bands relevant for hydrophobicity of SOM in the soil before heat treatment. The most significant decrease in absorbance following water repellency destruction took place in the frequency area corresponding to stretching vibrations of aliphatic structures within SOM. The results suggest that besides a general decrease of SOM content during heating, the loss of soil water repellence is primarily caused by the selective degradation of aliphatic structures.  相似文献   

5.
Considerable soil water repellency has been observed at a wide range of locations worldwide. The soil exhibiting water repellency is found within the upper part of the soil profile. The reduced rate of water infiltration into these soils leads to severe runoff erosion, and reduction of plant growth. Soil water repellency is promoted by drying of soil, and can be induced by fire or intense heating of soil containing hydrophobic organic matter. Recent studies outside soil science have shown how enhancement of the natural water repellency of materials, both porous and granular, by surface texture (i.e. surface roughness, pattern and morphology) into super‐hydrophobicity is possible. The similarities between these super‐hydrophobic materials and observed properties of water‐repellent soil are discussed from a non‐soil scientist, materials‐based perspective. A simple model is developed for a hydrophobic granular surface and it is shown that this can provide a mechanism for enhancement of soil water repellency through the relative size and spacing of grains and pores. The model provides a possible explanation for why soil water repellency should be more prevalent under dry conditions than wet. Consequences for water runoff, raindrop splash and soil erosion are discussed.  相似文献   

6.
This study reports the effects of a soil surfactant on reduction and prevention of water repellency and preferential flow paths in a sandy soil of a golf course fairway, located at Bosch en Duin near Utrecht, the Netherlands. The golf course is constructed on inland dunes composed of fine sand with low organic matter content. The topsoil (0–25 cm) of the fairways exhibits an extremely water repellent behaviour resulting in the development of numerous localized dry spots during dry periods in spring and summer. The influence of surfactant treatments on the wetting of the soil was studied by measuring the volumetric water content with a hand‐held Time Domain Reflectometry (TDR) device. Actual water repellency was assessed by placing water drops at regular distances on soil cores taken to a depth of 25 cm with a small (1.5 cm diameter) auger at intervals of 25 cm over a distance of 25 m across the untreated and treated parts of the fairway. Surfactant applications resulted in more homogeneous wetting of the soil profile and elimination of actual water repellency in the fairway soil. Treatments significantly increased water uptake and moisture levels of the soil and prevented the development of preferential flow paths. A visible improvement in turf quality and density was evident on the treated part of the fairway.  相似文献   

7.
The distribution and variation with soil depth of water repellency has been studied in fire-affected sand dunes under three different vegetation types (pine forest, shrubland and sparse herbaceous vegetation) in SW Spain. The persistence and intensity of water repellency at the exposed surface of soil was measured using the water drop penetration time test and the contact angle method, respectively, in surface samples (0–3 cm) collected at burned and unburned areas. The variation of water repellency with depth in burned areas was studied in soil profiles every 5 cm between 0 and 40 cm depth. None or slight soil water repellency was observed at unburned soil sites, whereas burned soil sites showed a high degree of repellency, especially under pines and shrubland. The spatial pattern of fire-induced soil water repellency was found to be associated to vegetation types, although it was modulated by soil acidity and the soil organic carbon content. Soil water repellency was generally higher at the soil surface, and decreased with depth. Dense pine forests and shrublands showed strong and/or severe water repellency in depth, but it was rare and limited to the first five centimeters under sparse herbaceous vegetation. The heterogeneity of moisture patterns under dense pine forests or shrublands showed the existence of wetting and water repellent three-dimensional soil patches.  相似文献   

8.
Millions of dollars are spent each year in the United States to mitigate the effects of wildfires and reduce the risk of flash floods and debris flows. Research from forested, chaparral, and rangeland communities indicate that severe wildfires can cause significant increases in soil water repellency resulting in increased runoff and erosion. Few data are available to document the effects of fire on the spatial and temporal variability in soil water repellency and potential impacts on infiltration and runoff on sagebrush-dominated landscapes. Soil water repellency, infiltration and runoff were assessed after two wildfires and one prescribed fire in three steep, sagebrush-dominated watersheds with coarse-textured soils. Water repellency was generally greater on unburned hillslopes and annual variability in water repellency had a greater impact on infiltration capacity than fire effects. The most significant impact of fire was canopy and ground cover removal on coppice microsites. Infiltration rates decreased on coppice microsites after fire even though soil water repellency was reduced. Fire-induced reduction in infiltration resulted from the combined effect of canopy and ground cover removal and the presence of naturally strong water repellent soils. Removal of ground cover likely increased the spatial connectivity of runoff areas from strongly water repellent soils. The results indicate that for coarse-textured sagebrush landscapes with high pre-fire soil water repellency, post-fire increases in runoff are more influenced by fire removal of ground and canopy cover than fire effects on soil water repellency and that the degree of these impacts may be significantly influenced by short-term fluctuations in water repellent soil conditions.  相似文献   

9.
It is established that soil hydrophobicity reduces soil infiltration rates, and enhances runoff flow and soil erosion. Water repellency has been studied with special interest in coniferous and eucalyptus forests, particularly after burning, but the number of studies concerning Mediterranean heathlands is still very low. In this paper, we study the occurrence and persistence of water repellency in soil samples collected under different plant species susceptible to induce soil hydrophobicity (Erica arborea, Erica australis, Calluna vulgaris, Quercus lusitanica and Rhododendron ponticum) in a natural protected area in southern Spain. Great attention has been paid to the relationships between soil water repellency and environmental factors as organic matter content and soil acidity. The largest hydrophobicity was measured in soil samples collected under E. australis, E. arborea and C. vulgaris. For these species, the organic matter content and pH showed positive and negative correlations with the persistence of water repellency, respectively. The hydrophobicity originated by humic substances in the soil seems to be the only explanation for slight soil water repellency under Q. lusitanica or R. ponticum. The patchy patterns of occurrence and persistence of soil water repellency is governed by the spatial distribution of the studied species and modulated by other factors. Soil surface water repellent layers reduce the infiltration rates and limit the water storage capacity. However, the macropore flow can be enhanced on non-repellent layers, cracks or roots such us the wetting's front shown. The vegetation effects on soil hydrology should be considered for afforestation works and flooding control.  相似文献   

10.
Olive mill waste water (OMW), a by-product of the olive mill industry, is produced in large amounts in Mediterranean countries. Olive mill waste water contains a high organic load, substantial amounts of plant nutrients but also several compounds with recognized toxicity towards living organisms. Moreover, OMW may represent a low cost source of water. Thus, the use of OMW for soil fertigation is a valuable option for its disposal, provided that its impact on soil chemical and biochemical properties is established. Investigations were performed on the short-term influence of OMW on several chemical and biochemical properties of a soil from a continental semi-arid Mediterranean region (Morocco). The soil was amended with 0, 18 and 36 ml 100 g−1 soil of OMW (corresponding to a field rate of 0, 40 and 80 m3 ha−1, respectively) and changes in various functionally related properties such as microbial biomass, basal respiration, extractable C and N, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties as well as the residual phytotoxicity of OMW amended and non-amended soils as assessed by tomato seed germination tests were also monitored. Temporary and permanent changes in several chemical and biochemical soil properties occurred following OMW application, thus being these properties varied in sensitivity to the applied disturbance. A sudden increase of total organic C, extractable N and C, available P and extractable Mn and Fe contents were measured. Simultaneously, a rapid increase of soil respiration, dehydrogenase and urease activities and microbial biomass (at 14 day incubation) of OMW amended soils occurred. In contrast, the activities of phosphatase, β-glucosidase, nitrate reductase and diphenol oxidase decreased markedly. The soil became highly phytotoxic after OMW addition (large decline of soil germination capability), mainly at 80 m3 ha−1 OMW. After 42 days' incubation, however, a complete recovery of the soil germination capability and a residual phytotoxicity of about 30% were observed with 40 and 80 m3 ha−1 OMW, respectively. These findings indicate that the impact of OMW on soil properties was the result of opposite effects, depending on the relative amounts of beneficial and toxic organic and inorganic compounds present. The toxic compounds contained in OMW most likely counteracted the beneficial effect of organic substrates provided, which promoted the growth and activity of indigenous microorganisms.  相似文献   

11.
The toxicity of olive mill wastewaters (OMW) is commonly attributed to monomeric phenols. OMW were treated in an aerated, stirred reactor containing agricultural soil, where the oxidative polymerization of phenols took place. In 24 h, OMW monomeric phenols decreased by >90%. This resulted in a corresponding reduction in phytotoxicity, as measured by germination tests with tomato and English cress seeds, and in microbial toxicity, as measured by lag phase duration in Bacillus cereus batch growth. Soil germination capability after irrigation with OMW was assessed in long-term pot experiments. The relative germination percentage of tomato was higher when the soil was irrigated with treated OMW rather than with untreated ones, although it was lower than the control (e.g., soil irrigated with distilled water). At longer incubation times, a complete recovery of the soil germination capability was achieved with treated, but not with untreated, OMW.  相似文献   

12.
为探求再生水灌溉对斥水和亲水土壤水力特性的影响,该文选用有代表性的斥水黏壤土和亲水黏壤土、斥水砂土和亲水砂土,测定其在自来水、再生水和其他4种生活污水条件下的土壤水分特征曲线,采用主成分分析法得到不同水质综合指标,分析水质综合指标对不同土壤水分特征曲线的影响,采用van Genuchten-Mualem模型对黏壤土土-水曲线的参数进行拟合,并分析水质综合指标对黏壤土累积当量孔径分布、比水容量和水分常数的影响。结果表明:在相同基质吸力情况下,黏壤土含水率随水质综合指标增加(水质变差)而减小,砂土的含水率随水质变化不大;在低吸力段,斥水和亲水黏壤土的比水容量随水质综合指标的增加而增加;土壤进气值与水质综合指标呈显著负线性相关关系(R~2分别为0.94和0.78);相同水质条件下,斥水土壤的进气值比亲水土壤小;随着水质综合指标的增加,斥水和亲水黏壤土的极微孔隙降低,而中等孔隙和大孔隙增加,小于某当量孔径的累积百分比增加;随着水质综合指标的增加,斥水和亲水黏壤土的田间持水率、凋萎系数、有效水和易利用水比例均减小,但再生水对田间持水率和易利用水比例降低作用不显著。研究结果可为大面积再生水灌溉及其管理提供一定的理论依据。  相似文献   

13.
Although it is well known that fluctuations in soil moisture affect the decomposition of organic matter, few studies have provided direct evidence of the underlying biophysical mechanisms. Cycles of wetting and drying (W/D) may not only alter soil pore structure, but also stimulate a proliferation of fungi, since these organisms are typically less affected by drought stress than bacteria, and hence the development of fungal-induced soil water repellency. The biophysical interaction between these processes is likely to influence the decomposition of organic matter amendments to soil and carbon sequestration. By using soil cores amended with rice straw, the objectives of this study were to determine the effects of drying intensity and frequency of W/D cycles on decomposition rate after rewetting, soil pore-size distribution, soil microbial biomass (SMB) and soil water repellency, and to assess their biophysical interaction. One W/D cycle consisted of wetting a soil core from the bottom for 1.5-days at −0.03 kPa followed by 1.5, 3.5 or 6.5 days of drying in open air at 25 ± 2.5 °C. This resulted in different intensities of drying and frequencies of W/D cycles over a 120-d incubation period. The decomposition rate decreased with repeated W/D cycles and increasing drying intensity, particularly between the 3rd and 9th W/D cycles. The SMB-C concentration and soil water repellency peaked at the 3rd W/D cycle. The peak size of the SMB-C concentration was larger in the drier soils and soil water repellency was significantly related to SMB-C concentration (R = 0.57, P = 0.025). The soil with the strongest drying treatment had a greater concentration of particulate organic carbon (POC) and the lowest C:N ratio in POC. Although the decomposition rate was significantly correlated to the concentration of soil organic carbon (SOC) (P < 0.01), POC (P < 0.01) and SMB-C (P < 0.05), stepwise regression analysis further identified that it was largely correlated to soil pore characteristics. The decrease in the decomposition rate in the drier soil was largely explained by the increase in macropores >300 μm in diameter (R = 0.98). The results suggest that an increased drying intensity or a longer duration of drying after rainfall or irrigation may favour SOC sequestration through inhibiting decomposition of amended residue. This may be due to the formation of macropores and their subsequent stabilization via fungal growth and fungal-induced soil water repellency.  相似文献   

14.
The potential of biochar to ameliorate soil water repellency has not been widely studied. Previous studies have focused on the potential for biochar to induce or exacerbate existing water repellency rather than alleviate it. This study investigates the effect of adding wettable biochar to water‐repellent soil by comparing the water drop penetration times (WDPTs) of a control and biochar‐amended soil. The potential of wettable biochar to act as a physical amendment to water‐repellent soil was evaluated by mixing coarsely‐ground biochar (CGB, particle size range 250–2000 µm) or finely‐ground biochar (FGB, particle size range < 250 µm) with one strongly and one severely naturally water‐repellent soil in various quantities, and then measuring the WDPT for each mixture. When biochar particles did not fall within the size range of existing soil particles, an initial increase in both mean WDPT (WDPTM) and variation in WDPT was observed with small additions of biochar. These effects possibly result from increased surface roughness and inhibition of infiltration by the suspension of drops above the average soil–air interface at a few hydrophobic points. Both CGB and FGB reduced soil water repellency, FGB more effectively than CGB. The addition of 10% w/w FGB reduced soil WDPT by 50%, and 25% FGB eliminated repellency. Direct absorption of water by biochar and an increase in soil surface area in contact with water are the predominant physical mechanisms involved. This exploratory study suggests biochar has the potential to amend water‐repellent soil.  相似文献   

15.
In Italy, the law no 574 of 1996 permits and regulates the disposal of olive mill wastewater (OMW), the liquid by-product obtained in oil mill when olive fruits are processed to extract virgin olive oil, by its controlled spreading on cultivated soil. With the aim to verify the long-term effects of the practice on olive production, oil quality, and physical–chemical and microbiological characteristics of soil, different amounts of OMW were spread in February, for 9 years consecutively, on soil cultivated with olive trees. The results obtained confirmed that the controlled spreading of OMW is not harmful for the plant production. On the contrary, OMW spread on olive grove is useful for the fertility of soil and the growth of microflora for the important supply of nitrogen (N), phosphorus (P), potassium (K), and, above all, of organic matter. The evaluated biological properties indicated that OMW spreading stimulates the growth of soil fungal and fungus-like communities and aerobic N2 fix micro-organisms. With regard to the oil quality, the data indicate that no significant differences were ascertained on the analyzed parameters.  相似文献   

16.
Water repellency can reduce the infiltration capacity of soils over timescales similar to those of precipitation events. Compaction can also reduce infiltration capacity by decreasing soil hydraulic conductivity, but the effect of compaction on soil water repellency is unknown. This study explores the effect of compaction on the wettability of water repellent soil. Three air‐dry (water content ~4 g 100 g?1) silt loam samples of contrasting wettability (non‐repellent, strongly and severely water repellent) were homogenized and subjected to various pressures in the range 0–1570 kPa in an odeometer for 24 h. Following removal, sample surface water repellency was reassessed using the water drop penetration time method and surface roughness using white light interferometry. An increase in compaction pressure caused a significant reduction in soil surface water repellency, which in turn increases the soil's initial infiltration capacity. The difference in surface roughness of soils compacted at the lowest and highest pressures was significant (at P > 0.2) suggesting an increase in the contact area between sessile water drops and soil surfaces was providing increased opportunities for surface wetting mechanisms to proceed. This suggests that compaction of a water repellent soil may lead to an increased rate of surface wetting, which is a precursor to successful infiltration of water into bulk soil. Although there may be a reduction in soil conductivity upon compaction, the more rapid initiation of infiltration may, in some circumstances, lead to an overall increase in the proportion of rain or irrigation water infiltrating water repellent soil, rather than contributing to surface run‐off or evaporation.  相似文献   

17.
再生水灌溉对农田土壤水流运动影响的研究进展   总被引:2,自引:1,他引:1  
再生水灌溉农田既可节约宝贵的水资源、缓解农业用水紧缺,同时再生水中的多种营养元素和微量元素可促进作物生长、提高粮食产量。但再生水中的物质进入农田后将引起土壤孔隙结构、团聚体结构、黏粒分散特征和水土作用关系等一系列的变化,进而引起土壤入渗性能和导水性能的改变,增大环境污染风险。该文综述了再生水中的悬浮无机固体、大分子有机质、油脂、表面活性剂和盐分对农田土壤水流运动的影响及其作用机理,指出受灌农田土壤结构性质演化过程与驱动机制、受灌农田土壤与灌溉入渗水流之间的相互作用关系为该领域亟需开展的2个研究方向。文章对再生水农田灌溉制度制定、污染风险控制和生态环境保护均有参考价值。  相似文献   

18.
十八胺化学改性下壤土的斥水性与入渗性能研究   总被引:2,自引:0,他引:2  
以壤土为研究对象,将十八胺基伯胺作为斥水剂掺入天然风干重塑壤土中,配置了不同十八烷基伯胺含量和初始含水率的改性试样,采用滴水穿透时间法测定了改性壤土的斥水等级,提出并获得了改性壤土的临界含水率,分析了十八烷基伯胺含量、壤土斥水等级、初始含水率的关系。在此基础上,采用全自动三轴渗透仪,开展了改性壤土在不同水头差作用下的渗透试验,揭示了不同斥水等级壤土的入渗性能,获得了改性壤土的稳定入渗率。结果表明:十八烷基伯胺含量和土壤含水率是影响土壤斥水性的重要因素。十八烷基伯胺含量越高,土壤斥水等级越大,上限含水率越低,而下限含水率越高。土壤斥水等级相同时,初始入渗速率受水头差影响较小,如十八胺基伯胺质量分数为0.6%的土壤,20和60k Pa水头差条件下其初始入渗速率分别为0.210和0.238cm/s;入渗持续一段时间后,入渗速率突然降低,降至0.005 cm/s,进入稳定入渗阶段。土壤斥水性越强,稳定入渗速率和稳定入渗率均呈下降趋势,壤土防渗效果越好。起始出渗时间随水头差的增大而减小,随土壤斥水性的增大而增大。上述研究成果可为斥水性土壤应用于土木水利工程领域提供试验基础。  相似文献   

19.
Isopropanol:NH3 and Methanol:KOH (saponification) alkaline treatments are usually applied in the study of soil organic matter. The first is used in studies of soil water repellency, and the latter in the extraction of ester-bound lipids from soil. In this study, isopropanol:NH3 and methanol:KOH treatments were applied separately in a solvent extracted repellent soil, in order to compare their efficiency in the extraction of water repellent compounds. The soil sample was taken from a site under a 16 year old Pinus taeda stand. The amount and class of organic compounds released by each treatment were compared using gas chromatography-mass spectrometry (GC-MS). Both treatments resulted in wettable soil after alkaline extraction. In general, alkaline treatments yielded extracts with the same class of organic compounds. Alkanoic acids, α,ω-alkanedioic acids, hydroxyalkanoic acids, aromatic compounds, and alkanols were identified, indicating the preservation of suberin and cutin biopolyester in the soil. Large differences were observed in the amounts of ω-hydroxyalkanoic acids, as well as in the quantity and distribution of dihydroxyalkanoic and trihydroxyalkanoic acids. In contrast to methanol:KOH, isopropanol:NH3 was not efficient in the extraction of whole aliphatic biopolyesters, mainly pine cutin-related products. Methanol:KOH was more effective in hydrolysis. The presence of biopolyesters in water repellent soil under the P. taeda stand seems to play an important role in water repellency.  相似文献   

20.
To date, evidence of the potential effects of burning practices on soil properties in Tunisia is limited. In order to address this issue, we carried out laboratory investigations of the effects of burning on soil aggregate stability (AS) and water repellency (WR) of a clayey and a sandy loam Fluvisol soils. The treatments included low (100°C, LT), medium (300°C, MT) and high (600°C, HT), heating temperatures. Unburned (0°C, UB) soil samples were used as a control. Two breakdown mechanisms, fast wetting (FW) and mechanical breakdown (MB), were used for the measurement of AS. The latter is expressed by calculating the mean weight diameter (MWD). The water drop penetration time (WDPT) was used to evaluate the soil WR. The results showed that the unburned clayey and sandy loam soils are poorly aggregated. The HT and MT treatments significantly (p < 0.05) increased MWD of both soils, compared to UB samples, following the FW stability test. A lesser increase of MWD was observed with the MB test. The LT treatment did not significantly (p < 0.05) affect the soils AS. For the unburned clayey soil, the FW and MB tests gave significantly (p < 0.05) different MWDs . In contrast, the unburned sandy loam soil had similar MWDs under both tests. As for water repellency, the sandy loam soil was initially wettable and the clayey soil slightly water repellent. Burning treatments did not affect the sandy loam soil behavior but caused a decrease of clayey soil WR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号