首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is to assess the climate change impact on the temporal variation of paddy rice irrigation reservoir water level from the future evaluated watershed inflow, and to suggest an adaptation method of the future reservoir water level management for stable water supply of paddy irrigation demands. A 366.5 km2 watershed including two irrigation reservoirs located in the upper middle part of South Korea was adopted. For the future evaluation, the SLURP model was set up using 9 years daily reservoir water level and streamflow records at the watershed outlet. The average Nash-Sutcliffe model efficiencies for calibration and validation were 0.69 and 0.65, respectively. For the future climate condition, the NIES MIROC3.2 hires data by SRES A1B and B1 scenarios of the IPCC was adopted. The future data were downscaled by applying Change Factor statistical method through bias-correction using 30 years past weather data. The results of future impact showed that the future reservoir storages of autumn and winter season after completion of irrigation period decreased for 2080s A1B scenario. Considering the future decrease of summer and autumn reservoir inflows, the reservoir operation has to be more conservative for preparing the water supply of paddy irrigation, and there should be a more prudent decision making for the reservoir release by storm events. Therefore, as the future adaptation strategy, the control of reservoir release by decreasing in August and September could secure the reservoir water level in autumn and winter season by reaching the water level to almost 100% like the present reservoir water level management.  相似文献   

2.
The Nilwala Ganga Basin of Sri Lanka includes important natural wetlands that are habitat for vulnerable animal and plant species. Flood protection and intensive rice production in the Basin have resulted in degraded acid soils and declining rice yields. However, traditional ‘maavee’ rice production outside the flood protection scheme has continued to generate a high-value rice product. This study reports on interviews conducted with farmers and other stakeholders to document the production practices and the potential environmental and economic benefits associated with maavee rice paddies. The maavee production system has prevailed for at least several decades. Farmers apply no chemicals to their paddies, relying instead on alluvial deposits as a source of nutrients, and on the natural pest and disease resistance of their traditional varieties. The maavee rice product can attain three times the selling price of rice from conventional farms making it more economically viable than conventional rice production. However, much of maavee production is for home consumption and the system is threatened by increasing labour costs, an ageing farming population and pressures to increase rice yields. Non-invasive production practices and the proximity of maavee paddies to regenerating wetlands in the Kirala Kele Sanctuary suggest that traditional paddies may constitute an important habitat for vulnerable wildlife; however, maavee farmers also perceive wetland birds as potentially damaging to rice. Based on a SWOT (strengths, weaknesses, opportunities and threats) analysis, we make recommendations for future research needs and potential management actions to safeguard the environmental and economic sustainability of the maavee system.  相似文献   

3.
水稻穗腐病和穗枯病的研究进展   总被引:1,自引:0,他引:1  
水稻穗腐病和穗枯病是我国新上升或新出现的两个水稻后期穗部病害。近年来,随着气候的变化、耕作栽培制度及肥水管理的改变以及品种(组合)的更替,两病在我国的发生和危害程度越来越严重。穗腐病和穗枯病病原菌有色,可产生毒素,不但直接影响水稻产量,还导致稻米品质降低,危害食用者的健康。穗腐病和穗枯病在发病时期、发生部位和危害程度上具有相似性。综述了两病害的发生、流行规律、危害状况、病原菌生物特性和毒素研究以及防治方法,提出了研究上目前存在的问题和今后的研究方向。  相似文献   

4.
Ponded water convection kinetics should be altered by growth stages of rice plants. We investigated the convective velocity of ponded water in a vegetated paddy field. The convective velocity was measured using the equipment through use of the principle of a hot-wire anemometer, and the temperature profile of the ponded water was measured using lysimeters with and without paddy rice vegetation. The maximum convective velocity in a vegetated plot was 0.7 mm s−1, slower than the maximum velocity in an unvegetated plot, which was 1.6 mm s−1. The convective velocity in a vegetated plot increased slightly when the temperature of the surface water was higher than that near the soil, between 09:00 and 17:00.  相似文献   

5.
South Korea is located in the Asian monsoon region, and paddy rice farming is one of the important agricultural activities, which may contribute to the non-point source pollution of inland water bodies along with rainfall runoff. The status of water quality in rural streams located throughout South Korea was examined in this study by water quality monitoring and statistical analysis. Totally six surveys were conducted in 2003 and 2005 to monitor 300 streams located in rural subwatersheds; these streams are affected by agricultural activities and water supply for agricultural practices. The monitoring was performed at the terminal point of each subwatershed. In each study year, the streams were monitored in the three hydrological periods (April, July, and October) to observe differences in the impacts of agricultural activity and rainfall pattern. During the surveys, 15 water quality parameters were measured and interpreted using multivariate statistical methods including factor analysis and cluster analysis. Results show that the water quality of the rural streams monitored in this study appeared to meet the Korean water quality criteria for agricultural use, which are 8.0 and 100 mg/L for biochemical oxygen demand and suspended solids, respectively. In terms of organic contamination and suspended solids, the best stream water quality was observed in October compared to other periods. This can be attributed to the fact that October follows the rice-harvesting period and has low rainfall; thus the streams are probably less affected by agricultural activities and surface runoff. The three hydrological periods did not show much variation in the nitrogen and phosphorus parameters related to stream water nutrient conditions. Factor analysis indicates that the first five factors for April explained about 67% of the total sample variance. In July, the first four factors explained about 60% of the total variance, while the first four factors for October explained about 65%. Cluster analysis reveals that the streams could be divided into four groups in April and October and five groups in July. The box-and-whisker plots of the physicochemical variables indicate that Group A had the best water quality among the groups. This study demonstrates that the rural stream water quality of South Korea in the Asian monsoon region can be greatly affected by agricultural activities such as paddy rice farming and rainfall patterns.  相似文献   

6.
Agricultural fields in the middle Shira River basin play an important role as a source of groundwater recharge; however, the water balance between the agricultural water and river water is unclear. This study was conducted to investigate the water balance in the fields by measuring the stream flow of agricultural water channels, which draw water from the Shira River. The flow rate of water channels was found to increase in the beginning of May, which corresponded to the cultivation of paddy rice fields. During summer, the total agricultural intake was comparable to the river flow observed in the middle Shira River Basin. Determination of the water budget for the targeted area revealed that most of the recharged water was dependent on agricultural irrigation from the river. The annual recharge of the overall target area was estimated to be as high as 15,300 mm. In addition, the infiltration rate was as high as 170 mm/day in the paddy fields during summer, and as high as 30 mm/day in the upland fields during winter. In order to recover the groundwater recharge in this region, it is necessary to extend the submerged period to include periods in which the stream water in the Shira River is not subject to heavy rainfall as well.  相似文献   

7.
Choi  Joongdae  Kim  Gunyeob  Park  Woonji  Shin  Minhwan  Choi  Yonghun  Lee  Suin  Lee  Deogbae  Yun  Dongkoun 《Paddy and Water Environment》2015,13(2):205-213
Paddy and Water Environment - A field experiment with a locally-bred Japonica rice cultivar was conducted in 2011 to measure the effect of paddy irrigation management in Korea on rice yield, water...  相似文献   

8.
Murdannia keisak is a competitive rice weed found throughout the world. The aims of this study were to investigate the influence of different water managements on the growth of M. keisak under greenhouse conditions, and to assess the efficacy of common rice herbicides against it under field conditions.Three water management techniques were tested under greenhouse conditions: saturation, intermittent irrigation, and continuous flooding. The efficacy against M. keisak was evaluated in paddy fields during 2003–2005. In 2003, bispyribac-sodium was applied alone or in combination with triclopyr or metosulam at 20, 27, and 32 days after seeding (DAS). In 2004 and 2005, bispyribac-sodium was applied once (30 DAS), but at two application rates.Results for the three water treatments showed continuous flooding reduced M. keisak biomass most as confirmed by aboveground fresh weights. In the paddy field experiments, bispyribac-sodium also proved highly effective against M. keisak and was selective to rice with more than 90% efficacy. The addition of tryclopyr or metosulam to bispyribac-sodium failed to improve its herbicidal efficacy. Finally, the best M. keisak control at field condition was obtained with continuous flooding combined with bispyribac-sodium.  相似文献   

9.
Climate changes due to global warming may affect paddy cultivation considerably. Climate changes directly affect rice plant growth, and within paddy cultivation catchments, alter the hydrological regime including flood patterns and water availability for irrigation, and drainage. Although increased atmospheric CO2 concentrations in the future may enhance plant growth through the CO2 fertilization effect, impacts of climate change on agriculture are complicated and difficult to predict precisely. This is especially the case for assessing impacts on paddy cultivation, where basin hydrological behavior needs to be understood in detail. Possible adaptations to reduce negative impacts should be tailored to local conditions, which modify climate change impacts on paddy cultivation. In this article, climate change impacts on paddy cultivation are reviewed and a general adaptation strategy is discussed with special reference to the Japanese context.  相似文献   

10.
To valuate the multifunctionality economically is effective to make it possible to realize the value for the nation and to compare functionalities among countries of the world. In this paper, the external economies of paddy fields and fallow paddy fields including wetlands as N removal function sites, and of upland fields and orchards as pollution sites are valuated by the newly proposed replacement cost method, by replacing them with construction costs of water quality improvement facilities. In addition, we discuss an agricultural land-use scenario in which cultivated land has no net negative economic effect on the water environment. The results showed that (1) paddy fields and fallow paddy fields including wetlands were respectively valued at 1.2×103 and 2.81×103 JPY m−2 on average as the N removal sites, (2) upland fields had 0.32×103 JPY m−2 on average of economic value, and suggested that paddy fields have an external economic value that compensates for the negative external economic value of upland fields 3.65 times their size.  相似文献   

11.
Paddy and Water Environment - According to recent climate projections for South Korea, increases in temperature and precipitation will affect water use and crop production associated with paddy...  相似文献   

12.
The Mekong River Basin (MRB) is the biggest basin in Monsoon Asia. About 80% of the agricultural lands, which occupy about 40% of the basin are rain-fed paddy rice area. Therefore, it is assumed that changes in rain-fed paddy rice production affect the total agricultural production to a great degree in the Mekong River Basin. While there are many factors affecting the productivity of rain-fed paddies, such as climate, water use, rice varieties, applications of manure, fertilizer and agro-chemicals, sowing date and other agronomic practices, this paper focuses on the relation between rainfall and yields of rain-fed paddies. Agricultural statistics and rainfall data were collected and analyzed for all 24 provinces in Cambodia for the years 2001 and 2002. Factors such as soil fertility and other natural conditions were removed by comparing the yield and rainfall in one province for different years. Special attention was given to the relation between yields of paddy in the wet season and rainfall, considering factors such as rice varieties, soil fertility, irrigation ratio and the ratio of area damaged by flood, drought, and insect. Although it is not easy to assess those impact factors on yields because they are organically interactive, the following results were obtained: (1) The ratio of high yielding varieties (HYV), soil fertility, and irrigation ratio among many factors that affect yields individually, especially if they are combined, (2) Total rainfall did not have a significant influence on rice yields even for the rain-fed paddies if it was over 700 mm in wet season, and one of the reasons for this would be that there exist supplementary water uses through small ponds and water ponding in local land depressions in and around paddies.  相似文献   

13.
The study synthesizes the spatiotemporal changes of the multifunctionality and benefit of Taiwanese paddy. The internal and external economic values of the paddy are quantitatively determined. Nationwide as well as regional variation of multifunctionality and benefits from 1999 to 2007 were considered. The substitution cost method was adopted to quantify the external economical values of rice paddy. Moreover, the compensating variation concept was applied to appraise the rational green subsidy of rice paddy in Taiwan. The result shows that the multifunctional benefits of rice paddy from 1999 to 2007 reduce 55, 18, 31, 13, and 28% in north, center, south, east regions, and nationwide of Taiwan, respectively. The reduction is mainly attributable to the significant decrease of rice-planting area. The external benefit may be further diminished if the fallow area increases continuously. In order to maintain the multifunctionality of rice paddy, we appraise a reasonable green subsidy to the cultivated paddy farmers. According to the results of the amount of green subsidy evaluated by the compensating variation concept, the estimated green subsidy is 21,000 NT$/ha for the nationwide paddy farmers. The government may consider to award the appraised green subsidy to paddy farmers directly for the sustainable management of rice paddy in Taiwan.  相似文献   

14.
Kahokugata Lake, a closed lake, has been subject to eutrophication. This research was conducted to clarify the actual phenomena and evaluation of the discharges of N and P from paddy test fields in the lowlands into Kahokugata Lake. A comprehensive mass balance of N and P was obtained from 4 years of study. About N, the mean value of harvested unhulled rice (79.9 kg/ha) was greater than mean controlled release fertilizer inputs (56.7 kg/ha). Other inputs and outputs include N in atmospheric acid deposition (21.4 kg/ha) and N fixation–denitrification (9.2 kg/ha). The rice straw recycled after harvest was balanced by straw produced in the succeeding year. The runoff and percolation losses discharged into the lake was 11.3 kg/ha, (8.6% of total inputs). Since the rice harvested was consumed domestically, which taking out from the farmland and, therefore, nitrogen pollutant into the lake was becoming small, paddy rice at this site is considered an “anti-polluting, purifying or cleansing” crop. The P content in harvested rice (39.4 kg/ha) was balanced by fertilizer inputs (36.4 kg/ha). Previous studies examining inflow–outflow relationships without considering a comprehensive mass balance may lead to erroneous conclusions. Our findings indicate paddy rice in lowlands could be an environmentally friendly crop and can play an important role in reducing pollution of lakes, and therefore should be considered in land use planning.  相似文献   

15.
Increasing water scarcity has necessitated the development of irrigated rice systems that require less water than the traditional flooded rice. The cultivation of aerobic rice is an effort to save water in response to growing worldwide water scarcity with the pressure to reduce water use and increase water productivity. An accurate estimation of different water balance components at the aerobic rice fields is essential to achieve effective use of limited water supplies. Some field water balance components, such as percolation, capillary rise and evapotranspiration, can not be easily measured; therefore a soil water balance model is required to develop and to test water management strategies. This paper presents results of a study to quantify time varying water balance under a critical soil water tension based irrigation criteria for the cultivation of non-ponded “aerobic rice” fields along the lower parts of the Yellow River. Based on the analysis and integration of existing field information on the hydrologic processes in an aerobic rice field, this paper outlines the general components of the water balance using a conceptual model approach. The time varying water balance is then analyzed using the feedback relations among the hydrologic processes in a commercial dynamic modeling environment, Vensim. The model simulates various water balance components such as actual evapotranspiration, deep percolation, surface runoff, and capillary rise in the aerobic rice field on a daily basis. The model parameters are validated with the observed experimental field data from the Huibei Irrigation Experiment Station, Kaifeng, China. The validated model is used to analyze irrigation application soil water tension trigger under wet, dry and average climate conditions using daily time steps. The scenario analysis show that to conserve scarce water resources during the average climate years the irrigation scheduling criteria can be set as −30 kPa average root zone soil water tension; whereas it can be set at −70 kPa during the dry years, however, the associated yields may reduce. Compared with the flooded lowland rice and other upland crops, with these two alternatives irrigation event triggers, aerobic rice cultivation can lead to significant water savings.  相似文献   

16.
The presence of arsenic in irrigation water and in paddy field soil were investigated to assess the accumulation of arsenic and its distribution in the various parts (root, straw, husk, and grain) of rice plant from an arsenic effected area of West Bengal. Results showed that the level of arsenic in irrigation water (0.05–0.70 mg l−1) was much above the WHO recommended arsenic limit of 0.01 mg l−1 for drinking water. The paddy soil gets contaminated from the irrigation water and thus enhancing the bioaccumulation of arsenic in rice plants. The total soil arsenic concentrations ranged from 1.34 to 14.09 mg kg−1. Soil organic carbon showed positive correlation with arsenic accumulation in rice plant, while soil pH showed strong negative correlation. Higher accumulation of arsenic was noticed in the root (6.92 ± 0.241–28.63 ± 0.225 mg kg−1) as compared to the straw (1.18 ± 0.002–2.13 ± 0.009 mg kg−1), husk (0.40 ± 0.004–1.05 ± 0.006 mg kg−1), and grain (0.16 ± 0.001–0.58 ± 0.003 mg kg−1) parts of the rice plant. However, the accumulation of arsenic in the rice grain of all the studied samples was found to be between 0.16 ± 0.001 and 0.58 ± 0.003 mg kg−1 dry weights of arsenic, which did not exceed the permissible limit in rice (1.0 mg kg−1 according to WHO recommendation). Two rice plant varieties, one high yielding (Red Minikit) and another local (Megi) had been chosen for the study of arsenic translocation. Higher translocation of arsenic was seen in the high yielding variety (0.194–0.393) compared to that by the local rice variety (0.099–0.161). An appreciable high efficiency in translocation of arsenic from shoot to grain (0.099–0.393) was observed in both the rice varieties compared to the translocation from root to shoot (0.040–0.108).  相似文献   

17.
The influence of hybrid solar drying (HSD) and storage conditions on microstructure, crack propagation, nano-hardness and milling indices of paddy and wheat grains were investigated. Milling yield and head rice yield of dried paddy was 71.48% and 72.42%, which was further increased by 1–1.26% and 3.12–4.65%, respectively. Flour yield from dried wheat was found to be 77.30% and was reduced by 3.5–7.7% after 180 days of storage. Maximum nano-hardness of 0.15 ± 0.02 GPa was obtained for rice stored at 5 °C, whereas, for wheat, nano-hardness, elastic modulus, and peak load values gradually reduced with a storage time of 180 days. Micro-X ray computed tomography images revealed the pore size of paddy and wheat samples to be in the range of 0.01–0.8 mm3. Micrographs showed a compact paddy surface, whereas wheat endosperm witnessed cell disruption and agglomeration.  相似文献   

18.
水稻对富营养化水体生态修复效应及其研究进展   总被引:3,自引:0,他引:3  
水体富营养化是制约我国农业可持续发展的重要因素。水稻具有显著的水质净化能力,利用水稻对富营养化水体进行生态修复成为植物修复的一个重要的研究方向。通过文献调研,总结了水稻对不同富营养化水体(湖泊、水库、污水河道、养殖尾水、农田退水和生活污水)修复效率,综合分析了不同修复模式(浮床种稻、稻田湿地和稻鱼共作)的技术特点、适用范围和影响因素,归纳总结了水稻对富营养化水体修复的主要作用机制,并对下一步的研究提出了相关建议。  相似文献   

19.
我国稻米加工起步于大规模采集野生稻的时期,最初是采用稻谷直接制成米的"稻出白"工艺,后来采用稻谷先制成糙米、糙米再制成米的"糙出白"工艺,两者构成了沿用几千年的古代稻米加工工艺;19世纪60年代开始,增加稻谷清理、白米整理等工段,构成了近代稻米加工工艺;到20世纪末,增加稻谷分级、下脚整理、稻壳整理、副产品整理、糙米精...  相似文献   

20.
This study was conducted in an attempt to determine the proper nitrogen and phosphorus application levels, nitrogen split application ratio, and application method for environmental-friendly rice production in a salt-affected rice paddy field, which was located in the Saemangeum reclaimed tidal belt on the western coast of South Korea, between April 1, 2003 and October 10, 2004. All treatments were replicated three times in a randomized block design (5 m × 4 m plot) with 11 treatments (total 33 plots). We designed three treatments for the evaluation of reasonable application levels of nitrogen and phosphorus fertilizers (A1–A3); five treatments to evaluate the nitrogen split application system (T1–T5); and three treatments to determine the proper application for chemical fertilizer (M1–M3). There was no significant difference of amylose and protein content among the application levels, application methods, and nitrogen split application ratios (P < 0.05). No significant differences in grain yield and yield components of rice were observed among the different application levels, application methods, and nitrogen split application ratios (P < 0.05). In order to save labor in agricultural households, preserve or enhance the grain quality of rice, and reduce nutrient losses, we determined that the optimum application level of nitrogen fertilizer was 140 kg ha−1; the application split ratio of nitrogen fertilizer at four different periods was 40% for basal fertilization, 20% for maximum tilling stage, 30% for the panicle formation stage, and 10% for the booting stage; and the best application methods were deep layer application and whole layer application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号