首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study quantifies the amount of metals (Na, K, Mg, Ca, Al, Fe, Mn, Ni, Cr, V, Cu, Zn, Cd, Pb) leached from the A-horizon of a podzolic spruce forest soil in southern Sweden during 2.5 yr, and offers statistical evidence of environmental conditions of importance to metal release. Considerable losses of Pb, Cr, Ni and V may occur from the A-horizon of forest soils under conditions favoring leaching of organic matter, Fe, and Al, i.e. during periods of comparably high soil temperature and moisture. Metals with a larger fraction present in exchangeable form (Na, Mg, Ca, Zn, Cd) are more susceptible to minor pH changes. An accelerated deposition or internal production of acidic matter therefore will reduce the retention times of these elements particularly.  相似文献   

2.
The fluxes of metals (Na, K, Ca, Mg, Fe, Mn, Al, Cu, Zn, Pb, Cd, Cr, and Ni) in two spruce forest soils in S. Sweden were quantified using the lysimeter technique. Amounts in precipitation (dry and wet), throughfall, litterfall and annual accumulation in biomass were also quantified, as well as stores in soil and biomass. The metal concentrations of the soil solutions varied greatly according to season. The leaching of some metals (Fe, Cu, Pb, Cr, and organic forms of Al) was associated with the leaching of organic matter. These complexes were leached from the A horizon in considerable amounts. They were precipitated in the upper B horizon and only small amounts were transported further downward. By contrast, the leaching of Na, Mg, Ca, Mn, Cd, Zn, Ni, and inorganic forms of Al increased with increasing soil depth. The concentrations of these metals also increased with increasing soil solution acidity. The highest concentrations were often found at the transition to the C horizon. The amounts of Na, K, Mg, Ca, Mn, Al, Zn, Cd, Cr, and Ni leached from the rooting zone were found to be larger than the amounts deposited from the atmosphere, the main source of these metals being the mineral soil. The reverse was true of Ph, Cu, and Fe, the sink being the upper part of the B horizon.  相似文献   

3.
Acidified (H2SO4+HNO3, 3:1) throughfall waters (pH 3.16 and 3.40 as volume weighted means or control (untreated throughfall water, pH 3.72) were applied for 3.5 yr by an automatic irrigation device to lysimeters containing podzolized spruce forest soils of 0–5, 0–15 and 0–35 cm soil depth. The total volume of the leachates was measured together with their pH and total content of DOC, Na, K, Ca, Mg, Fe, Mn, Al, Cu, Zn, Cd and Pb and the initial amounts of metals and H in the soil. The main part of H+ added with the throughfall waters was retained within the soil. Concentrations and fluxes of Mg, Ca, Mn, Zn and Cd in the soil were significantly increased by addition of acidified throughfall waters; K was less affected. As a consequence of lowered flux of DOC in the A horizon as acid input increased, Fe, Al, Cu, and Pb fluxes also decreased. The mobility of these metals in the A horizon was shown to be regulated mainly by the formation of watersoluble organic compounds rather than directly by pH variations. Compared to the control, the additional annual loss of Mg from the soil profile in the most acid treatment was c. 10% of the currently exchangeable amount.  相似文献   

4.
Relative rates of nutrient leaching from the epygeous apparatus of Quercus ilex L., Fagus sylvatica L., Acer opalus Mill., Euonymus japonicus L. and Phaseolus vulgaris L. were examined after exposure to simulated acid fog. Copper, Al, Fe, Mn, Ca, Mg, and Pb were preferentially leached at low pH, whereas leaching rates of Na, K, and Cd did not appear to be pH-influenced. Addition of surfactant to the spray solutions showed a slight reduction of leaching for all elements investigated. Except for Mg, foliar nutrient levels were not influenced during our experiments.  相似文献   

5.
Two adjacent soils with contrasting sulfate sorption were examined in terms of (i) water-soluble and ion-exchangeable Al, Fe, Ca, Mg, K, Mn and Zn, (ii), water- and bicarbonate-extractable sulfate, (iii) Truog-extractable P, (iv) dithionite-extractable Al, Mn and Fe and (v) treatment response to irrigation with simulated acid precipitation. The biomass of 8 year old black spruce saplings growing on the soils, and the distributions of Al, Fe, Ca, Mg, K, Mn, P and Zn within these plants, were also examined. The soils were well to moderately-well drained, with the mineral soil exposed by site preparation prior to planting. The exposed soil underneath individual saplings was treated with acid sulfate solutions (75 mm containing 2 to 50 mg L?1 H2SO4) applied during each of three consecutive growing seasons. The results indicate that Al, much like Fe, Ca, Mn and Zn, accumulated with time in the foliage, but K, Mg and P were highest in young plant tissues. Much of Al and Fe taken up remained in the fine roots. Aluminum uptake increased with the amount of dithionite-extractable Al (free Al oxide) in the soil. Growth of the black spruce saplings was not visibly affected by readily accessed Al in each soil, or by acid irrigation.Instead, growth was restricted by factors other than soil Al and acid irrigation in spite of (i) low soil pH, (ii) high levels of exchangeable Al, and (iii) high levels of Al in fine roots. Sulfate retention across and within the two soils was positively correlated with free Al oxide. The two soils responded to acid irrigation by accelerated silicate weathering and enhanced ion leaching. Sulfate sorption reduced these effects.  相似文献   

6.
我国几种土壤中铁锰结核的元素组成和地球化学特点   总被引:7,自引:0,他引:7  
The objective of this research was to isolate a dichlorvos (2,2-dichlorovinyl dimethyl phosphate)-degrading strain of Ochrobactrum sp., and determine its effectiveness in remediation of a dichlorvos-contaminated soil. A dichlorvos-degrading bacterium (strain DDV-1) was successfully isolated and identified as an Ochrobactrum sp. based on its 16S rDNA sequence analysis. Strain DDV-1 was able to utilize dichlorvos as a sole carbon source, and the optimal pH and temperature for its cell growth and degradation were 7.0 and 30 ℃, respectively. Also, the growth and degradation of strain DDV-1 showed the same response to dissolved oxygen. In addition, the soil degradation test indicated that in soil spiked with 100 mg L^-1 or 500 mg L^-1 dichlorvos and inoculated with 0.5% or 1.0% (v/v) strain DDV-1, complete degradation of dichlorvos could be achieved in 24 h. The present study showed that strain DDV-1 was a fast dichlorvos-degrading bacterium in soil. However, further research will be needed to clarify the degradation pathway and the properties of the key enzymes involved in its biodegradation.  相似文献   

7.
Abstract

The influence of nitrogen (N) fertilization on grass forage yield and quality as well as soil properties may vary with type of N fertilizer and time of application. The effects of 23 annual applications (from 1974 to 1996) of ammonium nitrate (AN) and urea (112 kg N ha‐1) applied in early fall, late fall, early spring and late spring on chemical soil properties and composition of bromegrass hay were evaluated in a field experiment on a thin Black Chernozemic soil located near Crossfield, Alberta, Canada. The influence of N addition, fertilizer type and application time on the soil properties was most pronounced in the 0–5 cm layer and declined in deeper soil layers. Application of N increased extractable ammonium (NH4)‐N, zinc (Zn), and iron (Fe) in the 0–5 cm layer; and sodium (Na), aluminum (Al), and manganese (Mn) in the 0–10 cm layer. But, N addition reduced extractable phosphoras (P) in the 0–30 cm; potassium (K) in the 0–60 cm; and pH, calcium (Ca), and magnesium (Mg) in the 0–5 cm soil layers. There was little effect of N fertilization on nitrate (NO3)‐N in soil. Soil pH, and extractable Ca and Mg in the 0–5 cm layer and Zn in the surface 15‐cm soil depth were lower with AN compared to urea, whereas the opposite was true for Fe, Mn, and Cu in the 0–5 cm layer and Na and Al in the top 15‐cm soil depth. Most of the changes in chemical soil properties due to N fertilization were reflected in elemental concentration of bromegrass hay, except for the increase of P concentration in bromegrass with N fertilization. In bromegrass hay for example, N addition increased total N and Cu with both N fertilizers and Mn and Zn with AN, but it lowered K and Ca with both fertilizers. There was more N and less Na with AN than urea in bromegrass hay. The effect of application time on chemical soil properties and composition of bromegrass hay was much less pronounced than N addition and fertilizer type. In conclusion, both N fertilizers changed chemical soil properties and composition of bromegrass hay, but the effects of 23 annual applications on soil properties were confined to shallow soil layers only. The greater lowering of soil pH with AN than urea may have implications of increased liming costs with AN.  相似文献   

8.
Fifteen Finnish Lapland lakes have been investigated to study pollution levels and possible acidification effects on nickel (Ni), copper (Cu), cobalt (Co), zinc (Zn), cadmium (Cd), lead (Pb), manganese (Mn), iron (Fe), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg) and aluminium (Al) concentrations in sediments. Four lakes have average water pH lower than 6.0 and alkalinity lower than 0.050 meq/1. Contamination factor (Cf, ratio of metal concentrations in the uppermost to the deepest layers for a given lake sediment core) of Pb is high, particularly for acidic and acidifying lakes (Cf=5.2–10.4). Ni, Cu, Co, Zn and Cd concentrations increase insignificantly towards sediment surface of some lakes (with a neutral pH) with the rare exception. The influence of passible lake acidification consists of decreasing Cu, Cd, Al, Zn concentrations and organic material contents (loss on ignition) towards the sediment surface. The buffer capacity index (BCI), determined as the ratio of the sum of alkaline and alkaline-earth metals (K, Na, Ca, Mg) to Al, is lower for acidic lakes (from 0.12 to 0.36), whereas for the other lakes the BCI values are higher (from 0.42 to 1.34). Thus, BCI-values, decreased contents of Al, Cd, Zn and Cu, as well as organic matter contents (OMC in the upper lake sediment suggest acidification of freshwater environments.  相似文献   

9.
《Journal of plant nutrition》2013,36(7):1191-1200
Abstract

Kosteletzkya virginica (L.) Presl. is a perennial dicot halophytic species that grows in brackish portions of coastal tidal marshes of the mid-Atlantic and southeastern United States. It was introduced into Northern Jiangsu, China, by the Halophyte Biotechnology Center (University of Delaware, Newark, DE) as a species with potential to improve the soil and develop ecologically sound saline agriculture. Fifteen major and minor elements [calcium (Ca), magnesium (Mg), phosphorus (P), sodium (Na), potassium (K), iron (Fe), manganese (Mn), zinc (Zn), lead (Pb), cadmium (Cd), aluminum (Al), copper (Cu), lithium (Li), cobalt (Co), and vanadium (V)] in roots, stems, leaves, and seeds of Kosteletzkya virginica and saline soils were measured in the study. Concentrations of Al, Fe, Zn, Mn, V, and Pb were the highest in soils, whereas concentrations of Na, Li, Cu, Ca, and Mg were the highest in the roots, stems, and leaves, respectively, and concentrations of K and P were the highest in the seeds. Potassium, P, Mg, and Ca were the main constituents in the seeds, and concentrations of Fe, Li, Mn, Zn, and Cu in seeds were relatively high. However, concentrations of Na and Al were very low in the seeds. The K/Na ratio in the seeds was 34.26, and the Ca/P ratio was 0.52, which was less than the maximum tolerable value for the human diet. These proportions were considered to be an advantage from a nutritional point of view. From roots to stems to leaves, increases in K/Na, Ca/Na, and Ca/Mg ratios could mitigate salt stress of the growth habitat of Kosteletzkya virginica. These results suggest that Kosteletzkya virginica is a halophytic species with potential as a rich source of mineral-element supply, and its products could be used for development of food, fodder, health care products and industrial raw materials.  相似文献   

10.
The aim of the current study was to identify major soil and leaf factors accounting for low natural rubber (NR, Hevea brasiliensis) productivity on tropical acid Acrisols in Vietnam. Twenty NR plots were measured with NR productivity, leaf factors (N, P, K, Ca, Mg, Mn, Cu, Fe, and Zn), soil factors (pH, particle size distribution, total C, N, P, K, exchangeable K, Ca, Mg, Al, Mn, Fe, Zn, available P). Cluster analysis showed that NR productivity could be separated into three clusters with low (23.2), medium (38.2), and high (61.3 g tree?1 harvest?1) yield. High-yield cluster had higher leaf P concentration and soil pH, while low-yield cluster had higher leaf Mn, soil exchangeable Al, and Mn concentration. Simple and multiple linear regression analysis applied with backward elimination procedure suggested that leaf and soil toxic concentration may be responsible for low NR productivity in the study soil.  相似文献   

11.
重庆缙云山酸沉降背景下针阔混交林水化学特征初步研究   总被引:1,自引:0,他引:1  
选取三峡库区缙云山小流域针阔混交林作为研究对象,对其大气降水、穿透雨、树干茎流、地表径流等水文过程中的pH值及Na+、K+、Ca2+、Mg2+等离子含量进行研究,结果表明:(1)大气降水pH值为5.31,呈酸性,已属于酸雨范围(pH<5.65)。相对于大气降水,针阔混交林穿透雨和树干茎流离子含量均大幅增加。穿透雨和树干茎流中,Mg、Cu元素的变异系数均小于大气降水,而K、Zn和Mn均大于大气降水。地表径流中Ca元素含量最高,为16.416mg/L,Mn元素含量最低,几乎检测不到。各元素含量排序为:Ca>K>Na>Mg>Zn>Fe>Cu>Mn。地下径流中,Ca元素是含量增加最多的养分元素,各元素含量排序为:Ca>K>Na>Mg>Zn>Cu>Fe=Mn。(2)Cu元素在穿透雨和树干茎流中均出现了负淋溶,其余各元素浓度均有所增加。如果林木长期处于酸雨逆境下,将会导致部分营养元素大量流失,并最终造成林木营养亏损且影响其生长。  相似文献   

12.
Total Suspended particulate matter (TSP) in urban atmosphere of Islamabad was collected using a high volume sampling technique for a period of one year. The nitric acid–perchloric acid extraction method was used and the metal contents were estimated by atomic absorption spectrophotometer. The highest mean concentration was found for Ca at 4.531 µg/m3, followed by Na (3.905 µg/m3), Fe (2.464 µg/m3), Zn (2.311 µg/m3), K (2.086 µg/m3), Mg (0.962 µg/m3), Cu (0.306 µg/m3), Sb (0.157 µg/m3), Pb (0.144 µg/m3) and Sr (0.101 µg/m3). On an average basis, the decreasing metal concentration trend was: Ca > Na > Fe > Zn > K > Mg > Cu > Sb > Pb > Sr > Mn > Co > Ni > Cr > Li > Cd ≈ Ag. The TSP levels varied from a minimum of 41.8 to a maximum of 977 µg/m3, with a mean value of 164 µg/m3, which was found to be higher than WHO primary and secondary standards. The correlation study revealed very strong correlations (r?>?0.71) between Fe–Mn, Sb–Co, Na–K, Mn–Mg, Pb–Cd and Sb–Sr. Among the meteorological parameters, temperature, wind speed and pan evaporation were found to be positively correlated with TSP, Ca, Fe, K, Mg, Mn and Ag, whereas, they exhibited negative relationships with relative humidity. On the other hand, Pb, Sb, Zn, Co, Cd and Li revealed significant positive correlations with relative humidity and negative with temperature, wind speed and pan evaporation. The major sources of airborne trace metals identified with the help of principle component analysis and cluster analysis were industrial emissions, automobile exhaust, biomass burning, oil combustion, fugitive emissions, resuspended soil dust and earth crust. The TSP and selected metals were also studied for seasonal variations, which showed that Na, K, Zn, Cu, Pb, Sb, Sr, Co and Cd peaked during the winter and remained lowest during the summer, while Ca, Fe, Mg and Mn were recorded highest during the spring.  相似文献   

13.
‘Helleri’ holly (Ilex crenata Thunb. ‘Helleri') plants were grown in solution culture at aluminum (Al) concentrations of 0, 6, 12, 24, and 48 mg.L‐1 for 116 days. Aluminum did not affect root or crown index, stem length growth, plant dry weight, or leaf area. Aluminum treatments significantly increased Al uptake and reduced nutrient uptake of magnesium (Mg), calcium (Ca), zinc (Zn), and copper (Cu) on some sampling dates. Iron (Fe) and manganese (Mn) uptake decreased on most sampling dates but increased on some with Al treatments. Potassium (K), phosphorus (P), and boron (B) uptake were significantly affected by Al, decreasing and increasing at different sampling dates. Although plants preferentially took up ammonium‐nitrogen (NH4 +‐N) in all treatments (including 0 Al controls), neither NH4 +‐N nor nitrate‐nitrogen (NO3 ‐N) uptake were affected by Al. Tissue concentrations of P, K, B, Zn, and Al increased with Al treatment; whereas tissue Ca, Mg, and Cu concentrations decreased with increasing Al. Iron and Mn tissue concentrations exhibited increases and decreases in different tissues. Results indicated that ‘Helleri’ holly was tolerant of high concentrations of Al.  相似文献   

14.
The concentration of major and trace elements was determined for tomato (Lycopersicon esculentumcv. Aromata F1) fruits grown in three different substrate systems. The systems were soil and rockwool irrigated with a normal nutrient solution and rockwool irrigated with a nutrient solution with elevated electrical conductivity (EC). At three harvest times, tomato fruits were analyzed for Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn by ICP-AES and for Cd, Cr, Mo, Ni, Pb, Sn, and V by HR-ICPMS. The concentrations of Ca, Cd, Fe, Mn, Mo, Na, Ni, Sr, and Zn were significantly different (p < 0.05) for tomato fruits grown on the different substrates. Between the harvest times different levels (p < 0.05) were shown for Ca, Cd, Fe, Mn Na, Ni, Sr, Zn Cu, K, Mg, P, Sn, and V. The concentration of Cd was >15 times higher and the concentration of Ca was 50-115% higher in soil-grown fruits than in rockwool-grown fruits. Principal component analysis applied on each harvest split the data into two groups. One group includes soil-grown fruits, and the other group includes rockwool-grown fruits with the two different nutrient solutions.  相似文献   

15.
Twenty-four Spanish thyme honey samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). Twenty-four minerals were quantified for each honey. The elements Al, As, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, Pb, S, Se, Si, Sr, and Zn were detected in all samples; seven elements are very abundant (Ca, K, Mg, Na, P, S, and Si), and six are not abundant (Al, Cu, Fe, Li, Mn, and Zn). Eleven of them are trace elements (As, Ba, Cd, Co, Cr, Ni, Mo, Pb, Se, Sr, and V) at <1 mg kg(-)(1). Classification of thyme honeys according to their origin (coast, mountains) was achieved by pattern recognition techniques on the mineral data. By means of principal component analysis, a good separation by geographical origin is obtained when scores for the two first principal components are plotted. Classification functions of 11 metals (Al, As, Cr, Cu, K, Li, Mg, Na, P, S, and V) were obtained using stepwise discriminant analysis and applied to classify correctly approximately 100% of the honey samples.  相似文献   

16.
Quercus ilex L. seedlings were intermittently exposed to simulated acidic and non-acidic fogs in 6-hr events for 16 times. After a 1-mo break, treatments were carried out again for a 5 day period. Strong acidity neutralization, weak acidity release and cation leaching from foliage and stem were determined. Leaching of Al, Cu, Mn, Fe, Cd, Pb, Ca, Mg, and K increased in response to acid treatment. This effect was less marked for Na. A positive correlation between H? uptake and cation leaching was found. Cationic release and neutralization of strong acidity increased after breaks in acid treatment, but this faculty and the amount of leached cations and neutralized acidity decreased with time. The stem showed a higher cation loss and higher buffer capacity than the leaves.  相似文献   

17.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

18.
The purpose of this investigation was to describe the element budget of a heathland area in Northwest Germany by measuring the fluxes of elements within the ecosystem. The following fluxes were considered: input by precipitation, canopy-drip, mineralisation, ion uptake, litterfall, output with seepage water. The elements H, Na, K, Ca, Mg, Mn, Fe, Al, S, P, CI, NO, NH, Norg were analysed, the period of investigation was one year. The results demonstrate the high importance of deposited nutrients like N (especially No3), Ca and Mg for the element budget and the stability of a heath-ecosystem. The internal turnover of K, Ca, Mg and Mn within the ecosystem mainly took place by leaching. No leaching was found for N, P, AI, Fe, S, CI, Na. For these elements litterfall was the dominant internal way of cycling. The humus layer was a sink for total-N, NO, Ca, Mg, Mn, Fe and S. NO, Ca, Mg, Mn and S were removed from the percolating solution, while for Fe and especially N and Mn an inhibition of mineralisation was found. The element balance for the mineral soil showed that this part is a sink for Hand a source mainly for Al, Ca and Mg, less for K and Na. From the cation/anion balance of the storage changes in mineral soil the ecosystem-internal H ion production was calculated as 0.4 keq per ha and year. It may be traced back to an uptake of NH, and dissociation of fulvic acids in the mineral soil. The results are discussed with respect to the development, stability and management of heath-ecosystems.  相似文献   

19.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

20.
《CATENA》2008,72(3):382-393
Soil development with time was investigated on beach ridges with ages ranging from about 1380 to 6240 14C-years BP at the eastern coast of central Patagonia. The main pedogenic processes are accumulation of organic matter and carbonate leaching and accumulation within the upper part of the soils. Soil formation is strongly influenced by incorporation of eolian sediments into the interstitial spaces between the gravel of which the beach ridges are composed. Different amounts of eolian material in the soils lead to differentiation into Leptosols (containing ≤ 10% fine earth in the upper 75 cm) and Regosols (containing > 10% fine earth). Soil depth functions and chronofunctions of organic carbon, calcium carbonate, pH, Ca:Zr, Mg:Zr, K:Zr, Na:Zr, Fe:Zr, Mn:Zr, and Si:Al (obtained from X-ray fluorescence analysis) were evaluated. To establish soil chronofunctions mean values of the horizon data of 0–10 cm below the desert pavement were used, which were weighted according to the horizon thicknesses. The depth function of pH shows a decrease towards the surface, indicating leaching of bases from the upper centimeters. Chronofunctions of pH show that within 6000 radiocarbon years of soil development pH drops from 7.0 to 6.6 in the Leptosols and from 8.1 to 7.5 in the Regosols. The higher pH of the Regosols is due to input of additional bases from the eolian sediments. Chronofunctions of Ca:Zr and K:Zr indicate progressive leaching of Ca and K in the Regosols, showing close relationships to time (R2 = 0.972 and 0.995). Na leaching as indicated by decreasing Na:Zr ratios shows a strong correlation to time only in the Leptosols (R2 = 0.999). Both, Leptosols and Regosols show close relationships to time for Fe:Zr (R2 = 0.817 and 0.824), Mn:Zr (R2 = 0.940 and 0.803), and Si:Al (0.971 and 0.977), indicating enrichment of Fe and Mn and leaching of Si. Leaching of mobile elements takes place on a higher level in the Regosols than in the Leptosols from the beginning of soil formation. Hence, a significant part of the eolian sediments must have been incorporated into the beach ridges very soon after their formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号