首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic derivative of manganese used as an additive in unleaded gasoline in Canada since 1977. Moreover, Canada is the only country in the world to have authorized the replacement of lead alkyls by MMT in gasoline. The purpose of the present study is to assess the importance of air contamination by Mn in relation to other air pollutants (gaseous and particulates), meteorological variables and traffic density. The concentration of both the gaseous (O3, CO, NO, NO2, SO2) and the particulate pollutants (Mn, Pb, NO? 3, SO?? 4, TSP) had been measured by the Montreal Urban Community in 1990 at seven sampling stations located in high traffic and low traffic density areas. Data on the meteorological conditions during that same period were also used. Non-parametric correlation, ANOVA and discriminant analyses were used to compare gaseous and particulate pollutants found between both levels of traffic density. In almost 50% of the daily air samples measured in 1990, the Mn concentrations are higher than the urban background level estimated at 0.04 μg m?3 and the variations of Mn concentrations are significantly correlated in time with traffic density. Moreover, Mn and TSP discriminate the best high and low traffic density areas. No significant differences have been observed between Pb, O3 and SO2 concentrations in both areas. These results should not be interpreted in terms of potential health effects since it is presently impossible to determine the fate of the Mn in the environment and its importance in terms of human exposure.  相似文献   

2.
The geographical and temporal variations of chemical constituents in winter precipitation collected in the areas along the coast of the Sea of Japan (AASJ) were discussed by analyzing the data obtained in the 1st and 2nd National Acid Deposition Survey by Japan Environmental Laboratories Association. In western Tohoku (WT) and Hokuriku (HR) areas in AASJ, in spite of large amounts of precipitation in winter, concentrations of non sea salt (nss-)SO4 2? are not as low as the other areas, and nss-Ca2+ in these areas is lower than the other areas. As a result, H+ concentrations of precipitation in these areas are somewhat higher than other areas. From the temporal analysis of daily sampled data and back trajectory analysis of air mass, it was found that the concentrations of nss-SO4 2?, NO3 ?, NH4 + and nss-Ca2+ are correlatively varied when air mass come from the Asian Continent, showing higher concentrations at the western sites in AASJ and depending on the meteorological conditions such as the direction of in flow air mass.  相似文献   

3.
Atmospheric monitoring activities in Canada relevant to the long-range transport of atmospheric pollutants and the ‘acid rain’ problem are reviewed. Particular aspects examined are network objectives, station density and location, sampling protocol, and quality assurance. Results from a number of these networks are presented for the purpose of outlining the nature and extent of air and precipitation contamination by pollution released in eastern North America. Examples discussed include: the spatial distribution of acidic wet deposition, the temporal variation of acid-related substances in both air and precipitation, an episode of long-range transport, and the impact of acidic emissions on the Arctic atmosphere. Acidic wet deposition is greatest in Canada east of the Manitoba-Ontario border. In 1978, it ranged from 18 to 46 mmol H+ m?2 yr?1 in the southern half of eastern Canada, with maxima in southern Ontario (44 mmol H+ m?2 yr?1) and southwestern Quebec (46 mmol H+ m?2 yr?1). Western Canada receives less acidity in precipitation, but areas of some concern are the Pacific Coast (10 mmol H+ m?2 yr?1) and to a lesser extent northern Alberta and Saskatchewan (3 to 5 mmol H+ m?2 yr?1). Acidic emissions from mid-latitude sources which reach the Arctic in winter cause an increase in the acidity of snow from a pH of approximately 5.6 in the summer to values of 4.9 to 5.1 in January through March.  相似文献   

4.
Elution of Cl?, SO4 2?, NO3 ?, and H+ often occurred in that order at a site in the central Sierra Nevada, California, that receives an annual average of 1000 cm of snowfall which is low in acidic components. During eight winter periods of above-base level snowpack outflow, and one spring melt period, on the average 25% of the ions were discharged at the following percentages of outflow volumes: Cl? at 11%, NO3 ? at 13%, SO4 2? at 18%, and H+ at 20%. Seven of eight winter outflows were associated with low ionic strength rainfall onto the snowpack. Mean solute concentrations during the first 25% and first 50% of the total outflow were significantly greater than during the last 75% and last 50% of the total outflow for Cl?, NO3 ?, and SO4 2?, but not for H+. Maximum solute concentrations were up to 2.9 times the overall event volume-weighted mean concentrations for Cl?, 3.7 times for NO3 ?, 3.0 times for SO4 2?, and 2.9 times for H+.  相似文献   

5.
There is a declining gradient of wet SO4 deposition from south to north in Nova Scotia with the highest values being in the south, along with a localized increase around the Halifax metropolitan area, due to local SO4 emission. Edaphic conditions such as drainage from soils containing gypsum or drainage on disturbed rocks containing pyrite, provide additional SO4 to surface waters.Acidity is usually absent in the former (pH > 7.0) and very high in the latter (as low as pH 3.6). By contrast peaty, organic drainages release water low in SO4 during the growing season but they release high amounts of organic anions (A?), consequently, these waters maintain decreased pH values, usually < 4.5. A study of over 80 wetlands and lakes during the ice free period in Nova Scotia showed that sea salt corrected SO4 concentrations range from 45 ueq L?1 in the south end of the province, ~30 ueq L?1 in the Kejimkujik area and < 17 ueq L?1 in the northern areas with values > 85 ueq L?1 in the Halifax area, reflecting the atmospheric deposition pattern of SO4 The SO4 concentrations may be > 2000 ueq L?1 in drainages containing gypsum, > 700 ueq L?1 in drainages over pyrite bearing socks but < 20 ueq/L?1 in streams draining bogs. The SO4 concentrations change considerably during the non-growing season when the ground is saturated with water or frozen, and the runoff is high (snow and rain often alternate in winter). Under such conditions SO4 concentration drops in the two former cases and increases in bog drainages, accompanied with a considerable drop in (A?) concentrations. Care should be taken when interpreting SO4 concentrations in surface waters in Nova Scotia with respect to atmospheric SO4 deposition.  相似文献   

6.
A linear gradient field exposure system was modified from one originally described by Shinn et al. (1977) and used to expose field grown soybeans (Glycine max cv Hark) to a concentration gradient of a mixture of two gaseous pollutants: SO2 and 03. Since this technique does not use enclosures, study plants experienced near ambient fluctuations in environmental conditions, including wind, and hence were exposed to widely fluctuating pollutant concentrations. Plants in the gradient system were exposed to both pollutants for 57 h on 12 days during the pod-filling period (31 August–17 September). Mean concentrations during the 57 h of exposure at the ‘high’ end of the gradient were 0.16 and 0.06 µl l?1 (PPM) SO2 and O3, respectively, with 10 h at greater than 0.25 and 0.10 µl?1 SO2 and O3, respectively. Total doses for these plants were estimated to be 9.0 and 3.5 µl?1 · h SO2 and O3, respectively. Comparison with plants exposed to ambient air indicated that exposure to SO2 and O3 reduced total yield per plant and dry mass per bean by as much as 36 and 15 %, respectively. Since concurrent exposure to a much higher dosage of SO2 alone (20.2 µl l?1 · h) was observed in a separate experiment to have no significant effect on yield, 03, although present at moderately low levels, was probably responsible (alone or synergistically with SO2) for the greatest reduction in seed size and yield.  相似文献   

7.
Sulphur (S) and nitrogen (N) components are of great concern because acidification and eutrophication still remain an important environmental issue in many regions of the world. Continuous monitoring (1981–1999) of S and N components both in air and precipitation in Lithuania (LT) has allowed us to evaluate the regional and temporal variations in relation to the pollutant emission changes. Despite of inter-site variability in concentration of pollutants within the regional scale, data showed a marked decrease in S concentrations both in air and precipitation over the Lithuania as a whole. Non-seasalt sulphate (nssSO4 2?) concentrations in precipitation and air decreased from 2.06 to 0.52 mgS/l and from 3.97 to 1.07 µgS/m3, respectively. The number of acidic (pH<5) precipitation did not exceed 50 % during 1995–1999. The observed trends for S species are consistent with those for sulphur dioxide (SO2) emission in Europe and Lithuania. Although nitrogen dioxide (NO2) concentration in air decreased by 17 %, significant changes in nitrate (NO3 ?) concentrations neither in precipitation nor in air have been observed. Three-day backward air isobaric trajectories were used for the identification of the source region of air pollutants  相似文献   

8.
Data defining the major ion chemistry of lakes located in eastern Canada have been compiled for the purpose of evaluating the current status of surface water quality in relation to acidic deposition. A companion paper for lakes in the eastern United States (i.e. Part II, Linthurst et al., 1986) has been prepared also. Data sources in Canada included the National Inventory Survey, the Ontario Lake Sensitivity data set, and the National Aquatic Data base which provided an overall data base of approximately 5700 lakes. Only recently collected data (largely 1980 or later) were used in the analysis. Frequency distribution statistics were obtained for pH, acid neutralizing capacity (ANC), SO4 and organic anion (A?) concentrations. Acidic and low ANC waters in eastern Canada occur in a pattern explained by a combination of biogeochemical factors and atmospheric deposition. Nova Scotia contained the highest proportion of acidic and ultralow ANC lakes of any region surveyed in eastern North America; since this region receives approximately 20 kg.ha?1.yr?1 wet SO4 deposition, the proposed target loading may be too high to protect the highly sensitive waters of Maritime Canada. Compared to the rest of eastern Canada, lakes in Ontario have relatively high ANCs due to the influence of CaCO3 contained in the glacial till of the area. Variation in the SO4 concentration of lakes approximately follows expected gradients in wet SO4 deposition. Naturally occurring organic acids do not play a dominating role in the acidification of eastern Canadian lakes.  相似文献   

9.
Atmospheric air pollution levels and long-term effects on the environment caused by simultaneous presence of SO2 and oil shale alkaline fly ash during the last five decades (since 1950) were investigated. The annual critical value of SO2 for forest (20 µg m?3) was surpassed in 1% (~35 km2) of the study area where the load was 30–40 µg m?3. No effect of long-term SO2 concentrations of up to 10–11 µg m?3 (0.5-h max up to 270 µg m?3) and simultaneous fly ash loads of up to 95 µg m?3 (1000 µg m?3) on the growth and needle longevity of Pinus sylvestris was established. The yearly deposition (average load up to 20–100 kg S ha?1) was alkaline rather than acidic due to an elevated base cation deposition in 1960–1989. Since 1990, the proportion of SO2 in the balance of components increased: about 70–85% of the total area was affected while the ratio of annual average concentrations of SO2 to fly ash was over 1. The limit values of fly ash for Sphagnum mosses and conifers in the presence of SO2 are recommended.  相似文献   

10.
Bulk precipitation samples were collected weekly during the winters of 1984 and 1985 at two high elevation sites in the Washington Cascades. The Puget basin, west and upwind of the Cascade sites, includes an urban industrialized region with a variety of area and point sources of acidic oxides. The precipitation was found to be low in contaminant content with SO4 = and NO3 ? concentrations as low or lower than those reported for remote pristine stations in the US or elsewhere. It is suggested that the reduced contaminant levels result from an interplay of the meteorological and washout factors unique to the region.  相似文献   

11.
Automated synoptic weather typing and robust orthogonal stepwise regression analysis (via principal components analysis) were applied together to develop within-weather-type air pollution prediction models for a variety of pollutants (specifically, carbon monoxide – CO, nitrogen dioxide – NO2, ozone – O3, sulphur dioxide – SO2, and suspended particles – SP) for the period 1974–2000 in south-central Canada. The SAS robust regression procedure was used to limit the influence of outliers on air pollution prediction algorithms. Six-hourly Environment Canada surface observed meteorological data and 6-hourly US National Centers for Environmental Prediction (NCEP) reanalysis data of various weather elements were used in the analysis. The models were developed using two-thirds of the total years for meteorological and air pollution data; the remaining one-third (randomly selected) was used for model validation. Robust stepwise regression analysis was performed to analytically determine the meteorological variables that might be used to predict air pollution concentrations. There was a significant correlation between observed daily mean air pollution concentrations and model predictions. About 20, 50, and 80% of the 80 prediction models across the study area possessed R 2 values ≥ 0.7, 0.6, and 0.5, respectively. The results of model validation were similar to those of model development, with slightly smaller model R 2 values.  相似文献   

12.
DOC concentrations in two streams of different hydrologic order are highly variable with the higher order stream exhibiting approximately a 3 mo response lag. Seasonal variation of SO4 concentration and flux are similar in both streams and do not reflect the seasonal patterns in precipitation. The basins store SO4 from May to November and lose SO4 from December to April. Consequently, SO4 concentrations and flux are maximum during January to March and reach a minimum during July to September. The highly organic lower order stream exhibits relatively stable pH controlled by two competing mechanisms. The pH is dominated by organic acids during the summer and autumn and by mineral acids during the late winter and early spring. In the higher order system, the pH tends to be inversely related to changes in SO4 concentration. These observations suggest that organic systems do respond to acidic deposition but that in some systems mineral acid influence may be restricted to the winter and spring.  相似文献   

13.
Sulfate (SO4 2?), nitrate (NO3 ?) and ammonium (NH4 +) concentrations in precipitation as measured at NADP sites within the Ohio River Valley of the Midwestern USA between 1985 and 2002 are quantified and temporal trends attributed to changes/ variations in (i) the precipitation regime, (ii) emission patterns and (iii) air mass trajectories. The results indicate that mean SO4 2? concentrations in precipitation declined by 37–43% between 1985 and 2002, while NO3 ? concentrations decreased by 1–32%, and NH4 + concentrations exhibited declining concentrations at some sites and increasing concentrations at others. The change in SO4 2? concentrations is in broad agreement with estimated reductions in sulfur dioxide emissions. Changes in NO3 ? concentrations appear to be less closely related to variations in emissions of oxides of nitrogen and exhibit a stronger dependence on weekly precipitation volume. Up to one quarter of the variability in log-transformed weekly NO3 ? concentrations in precipitation is explicable by variations in precipitation volume. Trends in annual average log-transformed SO4 2? concentrations exhibit only a relatively small influence of variability in weekly precipitation amount but at each of the sites considered the variance explanation of annual average log-transformed SO4 2? by sampling year was increased by removing the influence of precipitation volume. Annual mean log-transformed ion concentrations detrended for precipitation volume (by week) and emission changes (by year) exhibit positive correlations at all sites, indicating that the residual variability of SO4 2?, NO3 ? and NH4 + may have a common source which is postulated to be linked to synoptic scale variability and air mass trajectories.  相似文献   

14.
The Hong Kong Environmental ProtectionDepartment (HK EPD) monitoring data for SO2, NO, NO2and O3 from 1995 and 1996 at three stations spanning thelength of Hong Kong have been analyzed in the contexts ofselected meteorological parameters, and the types of synopticweather system. High level and episode days were definedaccording to two criteria. Higher pollutant gas concentrationswere found for systems involving the transport of continentalair masses to Hong Kong (cold front (type CF), north/northeastmonsoon (type NE)), or when tropical cyclones approached (typeAC) Hong Kong. Lower concentrations were observed when thecleaner maritime southerly (type S) airstreams were incidentat Hong Kong. Most notably, tropical cyclones (type C)ventilated and diluted local pollution. Days with high levelsof SO2, NO and NO2 were generally characterized bylow windspeed and lower relative humidity conditions. Bycontrast, high concentrations of O3 occurred both underlow windspeed conditions (type AC) and under the advection ofa continental air mass, generally at high windspeeds. Thediurnal variation of O3 levels is discussed: destructionis more important than production in determining local levels.  相似文献   

15.
Long term continuous monitoring measurements of urban atmospheric concentrations of O3, NO2, NO, and SO2 were performed for the first time in Ciudad Real, a city in central-southern Spain. The measurements were carried out using the differential optical absorption spectroscopy (DOAS) technique, with a commercial system (OPSIS, Lund-Sweden), covering the summer and winter seasons (from 21st July 2000 to 23rd March 2001). Mean levels of O3, NO2 and SO2 monitored during this period were: 27 μg m?3, 50 μg m?3 and 7 μg m?3 respectively. The highest hourly averaged value of O3 (160 μg m?3) was measured during the summer period, while NO2 was enhanced in wintertime (highest values 90 μg m?3). In the coldest period, when central heating installations were operating, SO2 showed maximum levels of 20 μg m?3. The daily, weekly and seasonal analysis of the data shows that photochemical air pollution dominates in this urban atmosphere and is strongly influenced by levels of motor traffic and domestic heating system emissions. These measurements were compared with other studies in Spain and Europe. Also, the long path averaged DOAS measurements were compared with in situ observations made in Ciudad Real, from 23rd August 2000 to 25th September 2000, using a mobile air pollution control station. All gas concentrations reported in this paper are below the WHO guidelines and the different thresholds introduced by the European Environmental Legislation.  相似文献   

16.
As part of a multidisciplinary study performed for the National Commission on Air Quality, the phenomena of atmospheric transport and the removal of SO2 and SO4 ? during a major regional sulfate episode (the period July 18–25, 1978 in the eastern U.S.) had been examined. The main objective of this study was the evaluation and the quantification of varying source/receptor relationships under atmospheric conditions conducive to long-range transport of fine particulate matter. In the case study presented here, air mass trajectories were obtained using the numerical NMC trajectory predictions and the results of the isobaric trajectory computations at the 850 mb level. The effects of alternative regional SO2 emission reduction scenarios on the predicted ambient SO2 and SO4 ? concentrations were also investigated using the new modeling methods that were specifically developed for this purpose.  相似文献   

17.
Fresh snowfall was collected on the surface of 8 lakes across a 350 km west-east transect from northeastern New York state to the coast of Maine after a single storm. In addition, every snowfall event during the winter of 1993 was collected on a single lake near the center of the transect. Across the transect, midwestern sources appear to dominate Pb and Cd concentrations, while Sb appears to be derived from midwestern sources as well as local and/or industrial East Coast sources. In all samples, the highest Na, Cl and Mg concentrations reflect a marine influence, but at some transect sites roadspray aerosol appears to contribute to Na and Cl concentrations. The regional pattern of Ca, K, Mn and Sr concentrations and Mn/Sr ratios indicate that woodsmoke may be an important winter source of these elements at some sites. In all samples, H+ is strongly correlated with NO3 ? (R2 = 0.97) and mean NO3 ?/SO4 2? molar ratios of 6.4 for transect samples, and 4.7 for temporal samples, are higher than mean NO3 ?/SO4 2? reported for other precipitation studies in the same region. The contribution of NO3 ? to the snowpack greatly exceeds that of SO4 2?, and may be a major source of acidity in aquatic ecosystems during snowmelt.  相似文献   

18.
Changes of the qualitative and quantitative features of snow and rain during the winter and the vegetation period, respectively, were studied during three years (1997–1999). The sites were located on Che?mova Góra Mt. in the Ojców National Park (South Poland), which is one of the most polluted areas in Poland. Standard methods of measuring bulk precipitation were used according to the ICP Forest Manual. One plot was near the summit part (OPN2), and the other plot was in the lower part close to the foot (OPN5) of the Che?mowa Góra Mt. The total amount of Ca decreased during the study period, while NO3 ? and SO4 ?2 decreased only in the vegetation period. During the winter period the snow carried high amounts of Cl?, NO3 ?, SO4 ?2, Na, Mg, and Ca. A decrease in pH was noticed during the winter periods, whereas an increase in pH was found during the vegetation period. Higher element concentrations were always found in the upper plot compared to the lower situated plot. This indicated that the upper and more exposed parts of the mountains in the Park were under higher pollution stress.  相似文献   

19.
There is considerable interest in the recovery of surface waters from acidification by acidic deposition. The Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. The ALTM lakes exhibited relatively uniform concentrations of SO4 2?. Lake-to-lake variability in acid neutralizing capacity (ANC) was largely due to differences in the supply of basic cations (Ca2+, Mg2+, K+, Na+; CB) to drainage waters. Lakes in the western and southern Adirondacks showed elevated concentrations of NO3 ?, while lakes in the central and eastern Adirondacks had lower NO3 ? concentrations during both peak and base flow periods. The ALTM lakes exhibited seasonal variations in ANC. Lake ANC was maximum during the late summer or autumn, and lowest during spring snowmelt. In general Adirondack lakes with ANC near 100 Μeq L?1 during base flow periods may experience decreases in ANC to near or below 0 Μeq L?1 during high flow periods. The ALTM lakes have exhibited long-term temporal trends in water chemistry. Most lakes have demonstrated declining SO4 2?, consistent with decreases in SO2 emissions and SO4 2? in precipitation in the eastern U.S. Reductions in SO4 2? have not coincided with a recovery in ANC. Rather, ANC values have declined in some ALTM lakes. This pattern is most likely due to increasing concentrations of NO3 ? that occurred in most of the ALTM drainage lakes.  相似文献   

20.
This study investigates the episodic acidification of Reedy Creek, a wetland-influenced coastal plain stream near Richmond, Virginia. Primary objectives of the study were to quantify the episodic variability of acid-base chemistry in Reedy Creek, to examine the seasonal variability in episodic response and to explain the hydrological and geochemical factors that contribute to episodic acidification. Chemical response was similar in each of the seven storms examined, however, the ranges in concentrations observed were commonly greater in summer/fall storms than in winter/spring storms. An increase in SO inf4 sup2? concentration with discharge was observed during all storms and peak concentration occurred at or near peak flow. Small increases in Mg2+, Ca2+, K+ concentrations and dissolved organic carbon (DOC) were observed during most storms. At the same time, ANC, Na+ and Cl? concentrations usually decreased with increasing discharge. In summer/fall storms, the absolute increase in SO inf4 sup2? concentration was one-third to 15 times the increase observed in winter/spring storms; the decrease in ANC during summer/fall storms was usually within the range of the decrease observed in winter/spring storms. In contrast, the decrease in Na+ and Cl? concentrations during winter/spring storms was much greater than that observed during summer/fall storms. Data show that while base flow anion deficit was higher in summer/fall than in winter/spring, anion deficit decreased during most summer/fall storms. In contrast, base flow anion deficit was lower in spring and winter, but increased during winter/spring storms. Increased SO inf4 sup2? concentration was the main cause of episodic acidification during storms at Reedy Creek, but increased anion deficit indicates organic acids may contribute to episodic acidification during winter/spring storms. Changes in SO inf4 sup2? concentration coincident with the hydrograph rise indicate quick routing of water through the watershed. Saturation overland flow appears to be the likely mechanism by which solutes are transported to the stream during storm flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号