首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Abstract

Studies were conducted to investigate phosphorus (P)‐sorption characteristics of some intensely weathered soils in south‐central Kentucky. Phosphorus adsorption characteristics reflected the chemical and mineralogical properties of the soils studied. All adsorption data were adequately described by first order kinetic reactions which implied that the soils have uniform surfaces for P sorption. In spite of the limitations of the Langmuir equation, its usefulness in summarizing data into one adsorption maximum value was demonstrated by nearly identical adsorption maxima estimated by three linear transformations of the equation and small deviations from the observed maxima. Variations in adsorption maxima between surface and subsoils and among soils were best correlated with extractable aluminum (Al) (r = 0.93, p<0.01) and crystalline iron (Fe) oxy‐hydroxides (r = 0.97, p<0.01). Clay content was also highly correlated with P sorption (r = 0.97, p <0.01) as well as with extractable Al (r = 0.83, p<0.05) and crystalline Fe oxides (r = 0.92, p<0.01) suggesting that its contribution may have been through its association with these soil components. In contrast, organic matter had a negative association with P sorption (r = ‐0.83, p<0.05). The results indicate higher P sorption in subsoil than in surface horizons, controlled mainly by extractable Al and crystalline Fe oxyhydroxides.  相似文献   

2.
滇池沉积物的功能: 磷源还是磷库?   总被引:2,自引:0,他引:2  
Dianchi Lake is a highly eutrophic lake in southwestern China where phosphorus (P) is the limiting element for eutrophication and where lake sediments play an important role in the P cycle. One hundred and eighteen sites were sampled throughout Dianchi Lake in 2002 to investigate the P loading of the lake sediments, while fresh surface sediments were studied in the laboratory to clarify its role for phosphorus. The results showed that concentrations of total phosphorus (TP) in sediments were very high, with a maximum value of 6.66 g kg-1, and decreased with sediment depth. P adsorption on surface sediments was rapid with adsorption amounts higher in acidic than in alkaline conditions. The release experiments showed that P release increased as pH rose from 7.0 to 10.5. Additionally, compared with aerobic conditions, P release was much higher under anaerobic: conditions, especially with low P content in the lake water. At present, the sediments in Dianchi Lake still function as a sink for phosphorus at high P levels in lake water. However, if the external P load was reduced and P content in lake water became low, the sediment would have a large potential for P release under anaerobic conditions.  相似文献   

3.
Background  River and lake sediments constitute complex and difficult analytical samples. On the other hand, sediments play a fundamental role in the distribution of toxic compounds in aquatic systems and in the evaluation of the current state and the course of changes taking place in the environment. Among elements present in the environment in trace concentrations, but having well-elaborated toxic properties, one of most dangerous is arsenic. The element occurs in the environment in several chemical forms, predominant are inorganic forms of As(V) and As(III), and methylated forms such as monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). Objectives  Reported herein are experiments, which were undertaken with the aim of examining the dynamics of arsenic sorption in sediments and its dependence on speciation of the element and the pH in the environment. Simultaneously, influence of organic matter content and chemical composition of the sediments on As sorption, were investigated. Methods  Sediment samples (upper 10 cm layer) were collected from three sites located in the vicinity of Cracow:
•  Rudawa river — 37 km long river, flowing mainly through the suburban area;
•  Vistula river — heavily contaminated, main Polish river;
•  Dobczyce reservoir — artificial reservoir on Raba river, total capacity of 125,000,000 m3, supplying about 60% of drinking water to the city of Cracow.
Using XRD and IR methods, mineral composition of sediments was analysed. Concentrations of iron, manganese, aluminium and arsenic as well as organic matter content in solid samples were analysed. Sorption experiment  100 g of dry sediment sample was placed in a 400 ml volume glass beaker. 300 ml of arsenic containing solution was poured into the beaker. Every 30 min (total experiment time span equalled 7 to 7.5 hours), 0.5 ml of the suspension’ (the beaker content was constantly mixed) was collected and centrifuged, and the concentration of arsenic was determined in the supernatant. In the series of experiments, solution contained about 0.05 μg/ml of arsenic in organic (DMAA) and inorganic forms, at different pH values — 3, 5, 7 and 9. Results and Discussion  Examined sediments of Vistula river and Dobczyce Lake were characterised by relatively high concentrations of arsenic, iron, manganese and aluminium.Rudawa river. At pH 3, the concentration of inorganic As in solution decreased from an initial value of 0.049 μg/ml to 0.012 μg/ml in 7.5 hours time. The same decreasing tendency was found at pH 5 (initial value 0.046 μg/ml, after 7.5 hours - 0.015 μg/ml). Less distinct sorption effects were noted at pH 7 and 9. Vistula river. At all pH values, a very significant decrease of inorganic As concentration up to 80% of the initial value, as well as a short time of achieving an equilibrium state (1 – 2.5 hours), was found. Dobczyce lake. Inorganic As was distinctly accumulated in sediments at pH 3 (decrease of As concentration in solution from 0.052 to 0.007 μg/ml after 7.5 hours of the experiment) and at pH 5. At pH 7, about 40% of As was accumulated in sediments (solution As concentration decrease from 0.050 to 0.030). Only 20% of As adsorbed on sediments at pH 9.Very weak accumulation of organic form of As (DMAA) was found in all examined sediments at pH 3 and 5. At higher pH values no sorption was registered. Conclusions  The following facts were established:
•  inorganic form of arsenic was effectively accumulated in all analysed sediments;
•  inorganic As sorption in sediments strongly depended on pH — for sediments of Rudawa river and Dobczyce lake, the highest sorption was found at pH 3, and a decrease of accumulated As was noted with an increase of pH (at pH 9, the lowest amount of As was immobilised in sediments); in the case of Vistula river sediments, a reverse tendency was found;
•  organic form of arsenic (DMAA) was accumulated only at pH 3 in all sediments and less significantly at pH 5 (Vistula river sediments); no sorption of that form of As was found in the other sediment samples;
•  state of equilibrium (no change in inorganic As concentration in liquid medium) was achieved in 1 hour for Vistula river sediments, after about 2 hours for Rudawa river and after about 4 hours for Dobczyce lake sediments.
Recommendations  The presented method of analysis of As sorption in sediments and results visualization (based on a newly defined coefficient) provides a useful tool for the characterization of sorptive properties of sediments and may be used for other compounds as well. Crucial, functional information — how much of a given element may be accumulated in sediments at a certain pH — is obtained without digestion of the sediment sample, in an experiment taking less than one day.  相似文献   

4.
Phosphate (PO4-P) sorption characteristics of soils and bedrock composition were determined in catchments of two mountain lakes, Ple?né Lake (PL) and ?ertovo Lake (CT), situated in the Bohemian Forest (Czech Republic). The aim was to explain higher terrestrial P export to mesotrophic PL compared to oligotrophic CT. Concentrations of Al and Fe oxides were the dominant parameters affecting soil ability to adsorb PO4-P. Depending on concentrations of Al and Fe oxides, P sorption maxima varied from 9.7 to 70.5 mmol kg?1 and from 7.4 to 121 mmol kg?1 in organic and mineral soil horizons, respectively. The catchment weighted mean PO4-P sorption capacity was 3.4 mol m?2 and 11.9 mol m?2 in the PL and CT soils, respectively. The higher PO4-P sorption capacity in the CT catchment was predominantly associated with higher pools of soil and Fe oxides. The CT bedrock (mica schist) released one order of magnitude less P than the PL bedrock (granite) within a pH range of catchment soils (pHCaCl2 of 2.5–4.5). The higher ability of PL bedrock to release P and the lower ability of PL soils to adsorb PO4-P thus contributed to the higher terrestrial P loading of this lake.  相似文献   

5.
Abstract

Phosphate sorption isotherms were determined for 16 representative major soils developed from different parent materials on Okinawa. Phosphate sorption characteristics were satisfactorily described by the Langmuir equation, which was used to determine phosphorus (P) sorption maxima of the soils. Phosphate sorption maxima ranged from 630 to 2208 mg P kg‐1 soil (mean 1,362 mg P kg‐1). The standard P requirement (i.e., the amount of P required to attain 0.2 mg P L‐1 equilibrium solution) followed the same trend as sorption maximum (r =0.94***), with values ranging from 132 to 1,020 mg P kg‐1 soil (mean 615 mg P kg‐1). This mean value corresponds to fertilizer addition of 923 kg P ha‐1 indicating that the soils have high P fertilizer requirements. Results of simple linear regression analysis indicated that sorption maximum was significantly correlated with clay content, organic matter, oxalate iron (Fe), pyrophosphate Fe, DCB aluminum (Al), oxalate Al, and pyrophosphate Al, but not with DCB Fe, pH, or available P content. The best regression model for predicting sorption maximum was the combination of clay, organic matter, pyrophosphate Fe, and DCB Al which altogether explained 79% of the variance in sorption maximum. The equation obtained could offer a rapid estimation of P sorption in Okinawan soils.  相似文献   

6.
Abstract

The material balance of all the chemical species associated with the phosphate sorption reaction by two amorphous clays, silica-alumina gel and synthetic goethite was investigated adjusting the initial pH to 4.0, 5.0, 6.0, and 7.0. Phosphate sorption was found to decrease with increasing initial pH. During phosphate sorption, the equilibrium pH rose, adsorption of Cl- decreased to a state of negative adsorption, adsorption of Na+ increased markedly, silicate was released, and Al in the solution was precipitated. With increasing initial pH, the amount of apparent released OH- increased, the amount of Na+ adsorption increased, and the amount of released silicate decreased. The overall relationship of the material balance is explained in terms of the charge balance associated with phosphate sorption.  相似文献   

7.
The adsorption of As(V) on alumina, hematite, kaolin and quartz has been measured as a function of pH (2 to 10), and As concentrations (10?4 to 10 ?8 M; in the alumina and kaolin systems only). The effects of sulfate (0 to 80 mg L?1) and fulvic acid (0 to 25 mg L?1) were studied. The charge of the solid surface and the As speciation in solution (determined by pH) were the most important chemical parameters affecting the sorption behavior. At pH below PZC of the solid, there was a qualitative correlation between the adsorption and the anion exchange capacity of the solid. For hematite at low pH (below 5) there was a reduction of the adsorption possibly related to the formation of positively charged species. The presence of sulfate or fulvic acid reduced the adsorption.  相似文献   

8.
Lake Sediments from Dianchi Lake: A Phosphorus Sink or Source?   总被引:1,自引:0,他引:1  
《土壤圈》2004,14(4):483-490
Dianchi Lake is a highly eutrophic lake in southwestern China where phosphorus (P) is the limiting element for eutrophication and where lake sediments play an important role in the P cycle. One hundred and eighteen sites were sampled throughout Dianchi Lake in 2002 to investigate the P loading of the lake sediments, while fresh surface sediments were studied in the laboratory to clarify its role for phosphorus. The results showed that concentrations of total phosphorus(TP) in sediments were very high, with a maximum value of 6.66 g kg^-1, and decreased with sediment depth. P adsorption on surface sediments was rapid with adsorption amounts higher in acidic than in alkaline conditions. The release experiments showed that P release increased as pH rose from 7.0 to 10.5. Additionally, compared with aerobic conditions, P release was much higher under anaerobic conditions, especially with low P content in the lake water. At present, the sediments in Dianchi Lake still function as a sink for phosphorus at high P levels in lake water. However, if the external P load was reduced and P content in lake water became low, the sediment would have a large potential for P release under anaerobic conditions.  相似文献   

9.
STUDIES ON SOIL COPPER   总被引:11,自引:0,他引:11  
Adsorption isotherms were determined for the specific adsorption of copper by soils and soil constituents. Adsorption was found to conform to the Langmuir equation. The Langmuir constants, a (adsorption maximum) and b (bonding term), were calculated. Soils were found to have specific adsorption maxima at pH 5.5 of between 340 and 5780 μg g?1, and a multiple regression analysis revealed that organic matter and free manganese oxides were the dominant constituents contributing towards specific adsorption. Adsorption maxima for soil constituents followed the order manganese oxides > organic matter > iron oxides > clay minerals, which supported the findings for whole soils. The cation exchange capacities (non-specific adsorption) of the test soils were found to be far greater than the specific adsorption maxima. However, evidence suggests that, for the relatively small amounts of copper normally present in soils, specific adsorption is the more important process in controlling the concentration of copper in the soil solution.  相似文献   

10.
Radiometric analyses of sorption and degradation of 14C-PCB and 14C-Picloram in different soils Adsorption - desorption isothermes with 14C-PCB (2,3,4-trichlorodiphenyl) and 14C-picloram (4-amino-3,5,6-trichloropyridin-carbonic acid) were determined on 15 different soils. The rates of decomposition were determined on 3 soils. The adsorption of PCB was very intense with K-factors according to Freundlich (soil:solution = 1:20) varying from 16 to 9861. Adsorption increased with increase of organic matter and Fe-content. Picloram showed low adsorption rates, with K-factors varying from 0,01 to 18 (soil:solution = 1:4). The chemical is adsorbed by the organic matter. Decrease of pH increases the adsorption. The correlation of the K-factors with %C, % clay, pH, CEC and %0Feo was computed. The decomposition tests were monitored over a period of 183 days (25°C, 80% water capacity) and yielded decomposition rates of < 0,1% PCB and < 2% picloram. This difference might be due to the structure of the substance. The decomposition of PCB depends most likely on the degree of sorption. No relation between the decomposition of picloram and sorption or soil properties was found.  相似文献   

11.
Phosphate sorption by natural hematites   总被引:6,自引:0,他引:6  
Iron (hydr)oxides are active phosphate sorbents in soils and sediments, but no information exists on phosphate (P) sorption by natural hematites. In this study, we characterized the chemical, mineralogical and P-sorption properties of 14 hematite-rich natural materials of different origins. Phosphate sorption was described by a modified Freundlich equation including a time term. Phosphate sorbed at 1d at an equilibrium concentration of 1 mg P dm?3 ranged widely (0.2–1.7 μmol m?2). After 1 d, hematites showed a marked slow sorption. At 75 d, and an equilibrium concentration of 6mg P dm?3, the total amount of P sorbed ranged between 0.8 and 4.1 μmol mp?2. Phosphate-sorption capacity was influenced by the morphology of the coherently scattering domains: the shorter the domains in the crystallographic c relative to the a direction, the lower the P-sorption capacity. This has been observed by other authors in synthetic hematites and agrees with the idea that the prismatic faces, which have singly co-ordinated Fe-OH groups, are more active in P-sorption than other faces. The average P sorption capacity of hematites was similar to that of natural goethites (2.6 μmol P m?2) but, in contrast to these, variability among samples was high. In comparison with goethites, hematites show slower sorption and lower affinity for phosphate.  相似文献   

12.
Cadmium sorption experiments were performed using four soil separates of different chemical and mineralogical composition, adding Cd solutions with initial concentrations ranging from 15 to 150 μg l?1. At the soils pHs, the sorption isotherms were a mixture of a constant partition isotherm with a high affinity one. Also, more than 90% of the initially added Cd was sorbed by all four soils. These results indicate a high affinity of these soils for trace amounts of Cd. The effect of pH was, in general, to decrease the amount of sorbed Cd as the pH decreased. The sorption isotherms were linear at all pH's. Also, the data fitted the Freundlich's sorption isotherm in all cases, but not Langmuir's. Freundlich's k values were found to be a good index of the relative Cd sorption affinities of the four soils at all the pH's used. It was found that the structural and chemical nature of the soils sorbent complex was a more important parameter than the CEC when studying the sorption of these trace amounts of Cd by soils.  相似文献   

13.
Abstract

The adsorption of selenium (Se) in the selenate form and its desorption by phosphate in four soils with different physiochemical properties were studied in the laboratory. To determine adsorption isotherms for selenate 25 mL of solutions containing 1 to 100 ppm of Se were added to 2.5 g of soil. Desorption isotherms were determined by resuspending the samples in phosphate solution. The selenate sorption process was adequately described by the Freundlich equation. In pine forest and woodland soils, characterized by the highest organic matter content and cation exchange capacity (CEC) values, the isotherms were classified as L type, since the amount of Se sorbed appeared to move towards saturation. The organic matter content played the most important part in the adsorption of Se, while pH appeared to have a small effect on the ability of the soil to adsorb Se. The high CaCO3 content of the pine forest soil may have contributed in increasing the Se adsorption notwithstanding the high pH value. The cultivated and arable soils showed a reduced sorption capacity. The sorption could be described by an S type curve. At low concentrations of Se the affinity of the solid phase was less than that of the liquid phase. By increasing the concentration of Se in solution, the affinity of the solid phase increased and the sorption was favored. Selenate desorption by water was negligible, whereas the amount of Se desorbed by phosphate varied among the different soils. The desorption experiments indicated that a significant portion of the sorbed Se was irreversibly retained. This suggests the existence of linkages which allow the release of Se in the soil solution only after physico‐chemical variation such as exchange with phosphate ions.  相似文献   

14.
FLUORIDE ADSORPTION BY ILLINOIS SOILS   总被引:8,自引:0,他引:8  
Fourteen surface and 6 subsurface horizons of Illinois soils adsorbed significant amounts of F? with release of OH?. At low concentrations, adsorption was described by both Langmuir and Freundlich isotherms. The calculated Langmuir adsorption capacities were related to pH, clay, organic carbon, and amorphous aluminum contents. Two soils with different gross chemical properties behaved in essentially the same manner, with adsorption maxima occuring between pH 5.5 and 6.5. The similarity between adsorption at different pH values for the soils and those for bauxite, allophane and synthesized ‘soil chlorite’, and the lack of adsorption maxima between pH 5.5 and 6.5 for pure kaolinite and montmorillonite, suggest that F? adsorption in the soils is due primarily to the presence of amorphous aluminum oxyhydroxides which are common weathering products in these soils.  相似文献   

15.
土壤组分对广东省酸性水稻土磷吸附参数的影响   总被引:9,自引:2,他引:7  
Soil components affecting phosphate sorption parameters were studied using acid paddy soils derived from basalt, granite, sand-shale and the Pearl River Delta sediments, respectively, in Guangdong Province.For each soil, seven 2.50 g subsamples were equilibrated with 50 mL 0.02 mol L-1 (pH=7.0) of KCl containing 0, 5, 10, 15, 25, 50 and 100 ng P kg-1, respectively, in order to derive P sorption parameters (P sorption maximum, P sorption intensity factor and maximum buffer capacity) by Langmuir isotherm equation. It was shown that the main soil components influencing phosphate sorption maximum (Xm) included soil clay, pH,amorphous iron oxide (Feo) and amorphous aluminum oxide (Alo), with their effects in the order of Alo >Feo > pH > clay. Among these components, pH had a negative effect, and the others had a positive effect.Organic matter (OM) was the only soil component influencing P sorption intensity factor (K). The main components influencing maximum phosphate buffer capacity (MBC) consisted of soil clay, OM, pH, Feo and Alo, with their effects in the order of Alo > OM > pH > Feo > clay. Path analysis indicated that among the components with positive effects on maximum phosphate buffer capacity (MBC), the effect was in the order of Alo > Feo > Clay, while among the components with negative effects, OM > pH. OM played an important role in mobilizing phosphate in acid paddy soils mainly through decreasing the sorption intensity of phosphate by soil particles.  相似文献   

16.
Abstract

The one and two Langmuir, the Freundlich, and the Temkin isotherms were fitted to phsophorus (P) sorption data for P sorption by calcium (Ca)‐bentonite at different initial concentration and pH values of 3.8, 4.8, 6.0, 7.0, 8.0, and 9.0. Each was found to describe P sorption by Ca‐bentonite with comparable success. The effect of pH on P adsorption by Ca‐bentonite was studied and Langmuir, Temkin, and Freundlich isotherms were converted to the forms:

Langmuir: (Co‐X)X= 1/(0.0275–0.0025pH)(12.323–1.061pH) + (Co‐X)(12.323–1.016pH) Temkin: X = (2.45–0.211pH)In(AC) Freundlich: X = (1.324–0.146pH)C(0.172+0044 P H) where: X = (mmol P/kg) the amount of P sorbed per unit weight of soil, C = (μmol P/L) the P concentration in the equilibrium solution, and Co = ((μmol P/L) initial P concentration. It is noteworthy, that the maximum amount (Xm) of P that can be sorbed in a monolayer decreases by increasing of pH. Finally, the B constant of Temkin isotherms is indepented from pH changes.  相似文献   

17.

Purpose

Fine sediments are usually collected in situ and air-dried for adsorption experiments, which may lead to particle aggregation and thus have a significant effect on phosphorus (P) adsorption under dynamic conditions. The main purpose of this study was to investigate the changes of aggregates due to drying with shear stress and the effects on the adsorption of P onto air-dried sediments under different shear rates after re-wetting.

Materials and methods

Sediment samples were collected from an alluvial river. Fine wet sediments (<31 μm) were wet-sieved and air-dried, and some air-dried sediments were further sonicated and served as the control. The grain size distribution of the three sediment samples (wet, dried, and sonicated) was measured to evaluate the particle aggregation level. The P sorption capacity of wet and dried sediments was determined by batch equilibrium experiments. The change of aggregate size with shear stress was investigated for dried and sonicated sediments. Sorption equilibrium experiments were performed to investigate the effect of shear stress on the P sorption with and without change of particle aggregation level, respectively.

Results and discussion

Fine particles agglomerated into larger aggregates during the drying process, resulting in a significant increase in the aggregate size. The sorption capacity was lower in aggregated sediment than in original wet sediment. Aggregate size in dried sediment decreased with the increase of shear rate, leading to an increase in the surface area and available adsorption sites, whereas the particle size of sonicated sediment was hardly affected. Accordingly, the P sorption amount of dried sediment increased with increasing shear rate, whereas that of sonicated sediment showed no significant change with shear rate after all sediments were suspended. There was a significant curvilinear correlation between aggregate size and P sorption amount for dried sediments, thus indicating that the P sorption amount increased significantly with decreasing aggregate size.

Conclusions

Sediment aggregation is an important factor affecting P adsorption besides the amount of suspended sediments and the exchange between suspended and bed sediments under dynamic conditions. The P equilibrium adsorption amount increases with shear stress for air-dried sediment. The effect of particle aggregation on the amount of P sorbed onto sediments should not be ignored, and thus, more attention should be paid to the pretreatment of sediment samples in the sorption experiments under dynamic conditions.
  相似文献   

18.
Phosphate adsorption of some Bavarian soils . Phosphate adsorption isotherms were established in buffered (pH 4.6, 5.5, 7.0) and some in unbuffered (0.01 M CaCl2) systems for 9 soil profiles, 6 of which represent loess soils in various stages of development. In the P-equilibrium concentration range of 0–10?4 mole/l two to three ranges can be identified, each of which obeys the Langmuir equation. In the lowest concentration range (0–0.2·10?4 mole/l) adsorption is linearly related to equilibrium concentration. For the different Langmuir ranges the adsorption maxima (b) increase and the adsorption coefficients (k) decrease with increasing equilibrium concentration. The maxima depend on buffer-pH in the order 5.5<4.6<7.0. A single point method similar to the one recently proposed by Bache and Williams (1971) was succesfully applied to obtain b from a single measurement using a significant correlation between b from complete isotherms and the ratio of P adsorbed to that in solution after the addition of a fixed amount of P (0.8–1,6 mg P/g of soil). The b-values in the equilibrium concentration range of 1–20·10?4 mole/l depend mainly on soil pH (negative) and clay (positive) (multiple correlation coefficient r = 0.858). The common reason for this appears to be the amount of exchangeable Al which is also significantly correlated with b. During soil development the depth function of b changes due to decalcification, drop of pH and migration of clay and iron oxides.  相似文献   

19.
Common sequential phosphorus (P) extraction methods are not specific to particular chemical species and have several limitations. This work presents the first chemical method for quantification of individual mineral and sorbed P species. It was developed by combining a conversion technique with a sequential extraction procedure. Mangrove sediments with different characteristics were incubated in pH‐adjusted 0.01 M CaCl2 with and without reference material additions of octacalcium phosphate (Ca8H2(PO4)6·5H2O; OCP), hydroxyapatite (Ca5(PO4)3OH), strengite (FePO4·2H2O) or variscite (AlPO4·2H2O). The changes in soluble phosphate concentration were measured in the supernatant solution, while pH‐induced variations in P composition were determined by subsequent sequential extraction of the sediments. Dissolved phosphate concentration was controlled by adsorption below pH 7.8. Above this pH, soluble phosphate concentration was governed by OCP, which was qualitatively determined by plotting the experimental values of pH + pH2PO4 and pH – 0.5 pCa on a solubility diagram including the isotherms of known crystalline phosphate compounds. In contrast to the often‐predicted slow dissolution rate of crystalline phosphates in soils or sediments, drastic changes in P composition by dissolution, precipitation and adsorption processes were detected after 7 days. These were mainly not observed indirectly by changes in dissolved phosphate through adsorption effects, but were determined quantitatively by subsequent sequential extraction, thus enabling the quantification of individual species. Evaluation of the method was performed by standard addition experiments. Besides P species quantification, the method provides the means for other applications, such as the determination of P mineral dissolution kinetics in soils and sediments, the prediction of P composition in changing environmental settings and the refinement of theoretical models of phosphate solubility in soil and sedimentary environments.  相似文献   

20.
小型浅水湖泊表层沉积物对磷的吸附特征及其影响因素   总被引:2,自引:0,他引:2  
[目的]分析城市小型浅水湖泊表层沉积物对磷的吸附特征及影响因素,为城市小型浅水湖泊富营养化控制和生态环境修复提供参考依据。[方法]在室内模拟条件下,从表层沉积物对磷的吸附动力学与等温吸附两个角度分析了孔目湖表层沉积物对磷的吸附特征,同时运用磷吸附量计算公式探讨不同pH值下孔目湖表层沉积物对磷吸附行为的影响。[结果]表层沉积物对磷的吸附动力学过程分为快吸附和慢吸附2个阶段,快吸附阶段主要发生在0~1h内,而慢吸附阶段主要发生在1~3h;表层沉积物对磷的吸附等温线在高浓度下同时符合Langmuir模型、Freundlich模型和D-R模型,而在低浓度下符合Linear模型;在酸性或中性环境条件下,表层沉积物对磷的吸附效果更好。[结论]富营养化严重的小型浅水湖泊,表层沉积物有向上覆水释放磷的趋势,且上覆水和沉积物中磷酸盐含量的多少均会影响表层沉积物对磷的吸附特征和动态平衡状态的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号