首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loading of chemical elements in precipitation at the Solling For the period 1969–1976 (NH4, NO3: 1971–1976) monthly values of concentrations and flows of the ions NH4, H, Na, K, Ca, Mg, Fe, Mn, Al, Cl, NO3, SO4, P and organic bound N in precipitation are passed on. From the correlations between elements the following main ion sources are concluded: sea water (Na, Cl), combustion processes (SO4, NO3, NH4), lime dust after dissolution by H2SO4 and HNO3 (Ca, Mg), soil dust after dissolution by H2SO4 and HNO3 (Al, Fe), leaching from plants (K, NO3, SO4, Mg, Ca), biogenic contaminations (P, organic N, K, NH4, NO3). Seasonal variations in the concentrations are most evident for Na and Cl, less for NH4, SO4 and NO3. During the measuring period the flux of NH4 is significantly increased; for H and SO4, less for NH4, Mg, Ca and Fe, the increasing trend was interrupted in winter 1973/74 (oil crisis). Consequences for sampling are discussed.  相似文献   

2.
Bayesian regularized back-propagation neural network (BRBPNN) was developed for trend analysis, acidity and chemical composition of precipitation in North Carolina using precipitation chemistry data in NADP. This study included two BRBPNN application problems: (i) the relationship between precipitation acidity (pH) and other ions (NH4 +, NO3 ?, SO4 2?, Ca2+, Mg2+, K+, Cl? and Na+) was performed by BRBPNN and the achieved optimal network structure was 8-15-1. Then the relative importance index, obtained through the sum of square weights between each input neuron and the hidden layer of BRBPNN(8-15-1), indicated that the ions' contribution to the acidity declined in the order of NH4 + > SO4 2? > NO3 ?; and (ii) investigations were also carried out using BRBPNN with respect to temporal variation of monthly mean NH4 +, SO4 2? and NO3 ? concentrations and their optimal architectures for the 1990–2003 data were 4-6-1, 4-6-1 and 4-4-1, respectively. All the estimated results of the optimal BRBPNNs showed that the relationship between the acidity and other ions or that between NH4 +, SO4 2?, NO3 ? concentrations with regard to precipitation amount and time variable was obviously nonlinear, since in contrast to multiple linear regression (MLR), BRBPNN was clearly better with less error in prediction and of higher correlation coefficients. Meanwhile, results also exhibited that BRBPNN was of automated regularization parameter selection capability and may ensure the excellent fitting and robustness. Thus, this study laid the foundation for the application of BRBPNN in the analysis of acid precipitation.  相似文献   

3.
Bulk precipitation was sampled every 2 weeks for more than 2 yr in a lowland catchment in the eastern part of the Netherlands and dissolved constituents were determined. This paper discusses only concentrations of the main constituents: S04, NH4, Cl, NO3, Na, Ca, H, Mg, and K (in decreasing order) and tries to delineate specific source regions for these ion species. Despite the complex character of precipitation chemistry and the rather long sampling interval, statistical evaluation (cluster- and discriminant analyses) of the data provided discriminating results. Four sources could be distinguished: seaspray supplying major part of Na, Mg, and CI; industrial activities (Ruhr area) contributing excess amounts of Cl and SO4 in association with NH4; rural activities supplying N03, while K, Ca and excess amounts of Na and Mg mainly derive from local dust. No clear source area could be detected for H, but it was shown that SO2-emission is the main source of acidification of precipitation at the study catchment.  相似文献   

4.
Rainwater samples (N = 51) were collected at Rampur, an areafree from anthropogenic activity during the monsoon of 1997 and1998. The concentration of ions follows a general pattern as Ca> NH4 > Mg > SO4 > Cl > F >Na > NO3 > K > HCOO >CH3 COO. The pH of precipitation ranges between 5.9 and 7.4. The levels of Ca and Mg at this site are higher than otherremote sites, probably dominated by particles of soil origin.Good correlation between Ca, NO3, SO4, HCOO and CH3COO indicate that a fraction of NO3, SO4, HCOOand CH3COO may be derived from soil or associated with Ca and Mg after neutralization. The order of neutralization factorCa (2.19) > NH4 (1.26) = Mg (1.26) indicates that majorneutralization occurred by Ca. Factor analysis suggested thatCa, Mg, Na, K, NO3, SO4, HCOO and CH3COO arecontributed by soil. NH3 is known to exist as(NH4)2SO4, NH4NO3 and NH4Cl. Theymay be formed in the atmospheric water droplets by scavenging ofaerosols and reaction of gaseous species.  相似文献   

5.
Data of the Multistate Atmospheric Power Production Pollution Study (MAP3S) and the National Atmospheric Deposition Program (NADP) were utilized to develop wet deposition spatial distribution patterns for the eastern United States for 1979. The ions of SO4 ?, NO3 ?, H+, and NH4 + were selected for study since they are the most prominent ones found in precipitation. Total wet deposition for 1979 was normalized to one centimeter of precipitation and objectively analyzed using the Synagraphic Mapping System (SYMAP) technique. Gradients of SO4 ? and NO3 ? were found to be essentially uniform, both to the east and west of the major pollution regions. An increased gradient in normalized deposition for SO4 ?, NO3 ?, and H+ was found in the Appalachian Mountain region. Estimates of total wet deposition were obtained by using the normalized deposition values in conjunction with precipitation as reported by the National Climatic Center. SYMAP analyses of the estimated total wet deposition were localized in nature due to precipitation variations between sites.  相似文献   

6.
Sulfate (SO4 2?), nitrate (NO3 ?) and ammonium (NH4 +) concentrations in precipitation as measured at NADP sites within the Ohio River Valley of the Midwestern USA between 1985 and 2002 are quantified and temporal trends attributed to changes/ variations in (i) the precipitation regime, (ii) emission patterns and (iii) air mass trajectories. The results indicate that mean SO4 2? concentrations in precipitation declined by 37–43% between 1985 and 2002, while NO3 ? concentrations decreased by 1–32%, and NH4 + concentrations exhibited declining concentrations at some sites and increasing concentrations at others. The change in SO4 2? concentrations is in broad agreement with estimated reductions in sulfur dioxide emissions. Changes in NO3 ? concentrations appear to be less closely related to variations in emissions of oxides of nitrogen and exhibit a stronger dependence on weekly precipitation volume. Up to one quarter of the variability in log-transformed weekly NO3 ? concentrations in precipitation is explicable by variations in precipitation volume. Trends in annual average log-transformed SO4 2? concentrations exhibit only a relatively small influence of variability in weekly precipitation amount but at each of the sites considered the variance explanation of annual average log-transformed SO4 2? by sampling year was increased by removing the influence of precipitation volume. Annual mean log-transformed ion concentrations detrended for precipitation volume (by week) and emission changes (by year) exhibit positive correlations at all sites, indicating that the residual variability of SO4 2?, NO3 ? and NH4 + may have a common source which is postulated to be linked to synoptic scale variability and air mass trajectories.  相似文献   

7.
There is considerable interest in the recovery of surface waters from acidification by acidic deposition. The Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. The ALTM lakes exhibited relatively uniform concentrations of SO4 2?. Lake-to-lake variability in acid neutralizing capacity (ANC) was largely due to differences in the supply of basic cations (Ca2+, Mg2+, K+, Na+; CB) to drainage waters. Lakes in the western and southern Adirondacks showed elevated concentrations of NO3 ?, while lakes in the central and eastern Adirondacks had lower NO3 ? concentrations during both peak and base flow periods. The ALTM lakes exhibited seasonal variations in ANC. Lake ANC was maximum during the late summer or autumn, and lowest during spring snowmelt. In general Adirondack lakes with ANC near 100 Μeq L?1 during base flow periods may experience decreases in ANC to near or below 0 Μeq L?1 during high flow periods. The ALTM lakes have exhibited long-term temporal trends in water chemistry. Most lakes have demonstrated declining SO4 2?, consistent with decreases in SO2 emissions and SO4 2? in precipitation in the eastern U.S. Reductions in SO4 2? have not coincided with a recovery in ANC. Rather, ANC values have declined in some ALTM lakes. This pattern is most likely due to increasing concentrations of NO3 ? that occurred in most of the ALTM drainage lakes.  相似文献   

8.
This study was carried out to evaluate acid depositions and to understand their effect. Wet precipitation has been collected at twenty-four sites in Korea for one year of 1999. The ion concentrations such as H+, Na+, K+, Mg2+, NH4 +, Ca2+, Cl?, NO3 ? and SO4 2? were chemically analyzed and determined. Precipitation had wide range of pH(3.5~8.5), and volume-weighted average was 5.2. The contribution amounts of Cl?, SO4 2? and NO3 ? in anion were shown to be 54%, 32%, and 14%, respectively and those of Na+ and NH4 + in cation were 32% and 25%. The ratios of Cl? and Mg2+ to Na+ in precipitation were similar to those of seawater, which imply that great amount of Cl? and Mg2+ in precipitation could be originated from seawater. The concentration of H+ is little related with SO4 2?, NO3 ? and Cl? ions, whereas nss?SO4 2? and NO3 ? are highly correlated with NH4 +, which could suggest that great amount of SO4 2? and NO3 ? exist in the form of ammonium associated salt. The annual wet deposition amounts (g m?2year?1) of SO4 2?, NO3 ?, Cl?, H+, NH4 +, Na+, K+, Ca2+ and Mg2+ were estimated as 0.88~4.89, 0.49~4.37, 0.30~9.80, 0.001~0.031, 0.06~2.15, 0.27~4.27, 0.10~3.81, 0.23~1.59 and 0.03~0.63.  相似文献   

9.
More than 1400 precipitation samples were collected weekly from 5 sites in Nova Scotia between 1978 and 1987. High concentrations of H+, non-marine SO inf4 sup= (*SO4) and NO inf3 sup- were observed in 1978 and 1986. In 1983, concentrations of all three parameters were the lowest in the data record. Fluctuations in emissions for SO2 are insufficient to account for the variability observed in concentration and deposition values. Mean annual concentrations in 1983 were 13, 16, and 6 ueq L-1 for H+, *SO4, and NO inf3 sup- , respectively. In 1986 the values were 35, 28, and 13 ueq L-1. Concentrations in 1978 were 31, 38, and 16 ueq L-1. Average pH of precipitation was 4.61 during the 10 yr study. The two most acidic years were 1979 (4.47) and 1986 (4.46). In 1983, the average pH was 4.89. The ratio (equivalents) of NO inf3 sup- to *SO4 was 0.41, so most acidity in the precipitation results from H2SO4 However, multiple regression analysis revealed that H+ is more sensitive to changes in NO3-concentrations than *SO4. Ratios of summer (JJA) vs winter (JFM) average concentrations were examined. During summer months, *SO4 and H+ were 1.8 times winter values. Summer to winter ratios for NO inf3 sup- and NH inf4 sup+ were 1.4 and 2.5, respectively.  相似文献   

10.
The contribution of atmospheric acids to cation leaching from a podzolic soil under mature maple-birch forest in central Ontario was examined during 1983. The movement of base cations was associated largely with NO3 ?, SO4 2? and organic acid anions in surface soil horizons, with SO4 2? and NO3 ? below the effective rooting zone, and SO4 2? and HCO3 ? in streamflow. Mineral soil horizons could adsorb little additional SO4 2? or associated cations at current soil solution SO4 2? concentrations. Therefore it is concluded that the soil in situ lacks a strong affinity for SO4 2?. Current annual inputs to the forest of SO4 2? and NO3 ? in bulk precipitation (26.4 and 18.2 kg ha?1, equivalent to 8.8 kg S and 4.1 kg N ha?1 , respectively) contributed significantly to cation leaching from the soil. In order to maintain exchangeable cations in soil at current levels, a rate of weathering yielding 29.6, 5.0, 4.4 and 2.2 kg ha?1 yr?1 of Ca2+, Na+, Mg2+ and K+, respectively, would be required.  相似文献   

11.
An eulerian long-range transport model for the calculation of concentrations of SO2, SO4, NO x , and NO3 and wet and dry depositions of SO x (sum of SO2 and SO4) and NO y (sum of NO, NO2 and NO3) over Europe is presented. The model is developed in such a way that only routinely available, analyzed or prognostic meteorological fields are required as input data. In this way it is possible to obtain a forecast of the air quality during smog episodes. For evaluation of smog episodes the model provides a way to estimate the contributions of different sources and the effect of emission scenarios. The model has been evaluated for four winter and three summer episodes. The modeled concentrations of SO2 and SO, are in agreement with the available measurements. A less good agreement is found for NO2 and NO x (sum of NO and NO2) concentrations. For these components the model tends to underpredict the measured values.  相似文献   

12.
The changes in ionic contents were studied in acidic precipitation samples collected for precipitation events in Taipei, which is near the sea. The storage cases under investigation include filtration, refrigeration, and light. Thus the experimental design leads all precipitation samples collected in the same rain event stored under different conditions. They were then analyzed six times successively within two months to provide the information containing potential ionic composition change. The measured constituents are H+, K+, Na+, Ca2+, Mg2+, NH4 +, NO3 ?, SO4 2?, and Cl?. The comparison of measured ionic concentrations corresponding to different storage methods yield no significant difference. The increases of NO3 ? and decreases of NH4 + with time were observed to be of similar magnitude, while the variation of pH values is significant. The presented study indicated the important role played by sample storage in determining the ionic composition of precipitation samples.  相似文献   

13.
Fog/cloud and rain water were collected at the mountainside of Hachimantai range in northern Japan and rain water was also collected at Akita City in order to investigate the air pollutant scavenging mechanism. The concentrations of various ions in these samples were analyzed, and the fog drop size and the wind direction were measured at each fog event. The fog at Hachimantai range had a very high total ion concentration, and was considerably acidified by non sea salt (nss-) SO4 2? and NO3 ?, compared with the rain at Akita and all sites in Hachimantai range. Using the oblique rotational factor analysis, three factors were extracted as the air pollutants; A: (NH4)2SO4+H2SO4, B: sea salts+HNO3+H2SO4, C: NH4NO3+OH?. These salts are well-known as the cloud condensation nuclei (CCN). Combining the factor analysis with the 72h back trajectory at 850hPa level, the contribution of Factor A was closely connected to the long-range transportation of anthropogenic or natural aerosol in air masses of continental origin.  相似文献   

14.
Long-term changes in the chemistry of precipitation (1978–94) and 16 lakes (1982–94) were investigated in the Adirondack region of New York, USA. Time-series analysis showed that concentrations of SO4 2–, NO3 , NH4 + and basic cations have decreased in precipitation, resulting in increases in pH. A relatively uniform rate of decline in SO4 2– concentrations in lakes across the region (1.81±0.35 eq L–1 yr–1) suggests that this change was due to decreases in atmospheric deposition. The decrease in lake SO4 2– was considerably less than the rate of decline anticipated from atmospheric deposition. This discrepancy may be due to release of previously deposited SO4 2– from soil, thereby delaying the recovery of lake water acidity. Despite the marked declines in concentrations of SO4 2– in Adirondack lakes, there has been no systematic increase in pH and ANC. The decline in SO4 2– has corresponded with a near stoichiometric decrease in concentrations of basic cations in low ANC lakes. A pattern of increasing NO3 concentrations that was evident in lakes across the region during the 1980's has been followed by a period of lower concentrations. Currently there are no significant trends in NO3 concentrations in Adirondack lakes.  相似文献   

15.
Abstract

Simple microdiffusion methods are described for determination of NH4 +, NO3 , and NO2 in soil extracts. These methods involve diffusion of NH3 in a 473‐mL (1‐pint) wide‐mouth Mason jar, the diffused NH3‐N being collected in 3 mL of boric acid‐indicator solution in a 60 mm (dia.) Petri dish suspended from the Mason jar lid, for quantitative determination by titrimetry (0.0025 M H2SO4). Magnesium oxide is used to liberate NH4 +; Devarda's alloy is used to reduce NO3‐ and NO2 to NH4 +; and sulfamic acid is used to eliminate NO2 . Depending upon the volume of soil extract (10–50 mL), diffusion at room temperature (a20°C) was complete in 18–72 h with orbital shaking, and in 24–86 h without shaking. The methods gave quantitative recovery of NH4 +, NO3 , and NO2 added to soil extracts. A potential source of interference in the methods involving use of Devarda's alloy is the liberation of NH4 +‐N from alkali‐labile organic‐N compounds.  相似文献   

16.
Over a 30-mo period forest microcosms were used to evaluate the impact of simulated acidic precipitation pH treatments of 5.7, 4.5, 4.0, and 3.5 annual average on the nutrient content of three tree species growing in the microcosm as well as the throughfall passing through the forest canopy. Throughfall pH responded significantly to the pH treatment and it was observed that while there was some neutralizing capacity in the canopy, it was not sufficient to completely ameliorate the treatments applied. Concentrations of Ca, Cl, and PO4 increased in throughfall; however, these increases were generally associated with the lowest pH treatments. The principal anions, NO3 and SO4, introduced into the system by the precipitation treatments, exhibited different response patterns with throughfall NO3 concentration declining with time and SO4 increasing. While throughfall analysis suggested an increase in foliar leaching of certain elements, foliage, stem, and root analysis failed to suggest any consistently significant response for any element or tree species evaluated. Leaching of dry deposited materials and compensatory nutrient cycling are suggested as possible explanations for the observed increases in throughfall concentration in the absence of reductions in plant tissue concentrations.  相似文献   

17.
Year-to-year variation in acidic deposition within a mature sugar maple-dominated forest and in leaching of ions from the associated podzolic soil were examined at the Turkey Lakes Watershed between 1981 and 1986. Below-canopy inputs to the soil of SO4 2? and NO3 ? in throughfall averaged 640 and 295 eq. ha?1 yr?1; the corresponding ranges were 493–917 and 261–443 eq. ha?1 yr?1. The contribution of atmospheric deposition to SO4 2? NO3 ? and Ca2+ leaching decreased over the six years. During the study period, the mean annual volume-weighted NO3 ? concentration decreased in throughfall and forest-floor percolate and increased in the mineral-soil solution collected below the effective rooting zone. A substantial shift in the balance between SO4 2? and NO3 ?leaching from the mineral soil was observed; leaching of SO4 2?decreased and NO3 ? leaching increased with time. Leaching of Ca2+ and Mg2+ from the soil was increased as a result of excess NO3 ? production in the soil. The calculated output of NO3 ? from the soil, which averaged 1505 eq. ha?1 yr?1, considerably exceeded the atmospheric deposition of NO3 ?, whereas SO4 2? outputs were only moderately greater than inputs.  相似文献   

18.
A model deciduous forest soil (Schaffenaker loamy sand) was treated for 8 mo in the greenhouse in 25 cm reconstructed columns with simulated throughfall at pH 6.0 or 4.0, and SO4 2? levels of 12.8 or 24.8 mg L?1. Red oak seedlings grown in the microcosms showed no growth or foliar element response to the treatments. Sulfate loading had a greater impact on soil and leachate chemistry than pH. Higher available soil P in the A, horizon was associated with the pH 6.0 and high SO4 2?2 treatment combination. High SO4 2? loading also reduced exchangeable K+ in the A1?. Other soil horizons were unaffected by either treatment. Leachate chemistry was not significantly altered by througfall pH, but significantly greater export of Na+, Ca2+, Mg2+, Al3+, and NO3 ?, and lower SO4 2? loss, occurred with low SO4 ? input. Comparatively half as much NO3 ? loss was associated with high SO4 2? deposition. The high rate of NO3 ? leaching appeared responsible for greater equivalent mass loss of cations from the low SO4 2? treatment. Leachate removal of SO4 2? approximated input after 8 mo. The capacity of this soil to adsorb SO4 2? appeared relatively limited in the absence of normal element cycling. The sulfate component of simulated deciduous forest throughfall was shown to have a potentially greater impact than pH on ion leaching from forest soil. Additional consideration of the role of SO2? 4 deposition, in the context of throughfall rather than incident precipitation, is warranted in studies of acidic deposition effects on internal forest soil processes.  相似文献   

19.
The pH of precipitation, and the concentrations in precipitation and depositions by precipitation of H+, major cations, N, S, and chloride were measured in bulk collectors at three sites in Eastern England. The Rothamsted site is 100 km from the coast in a semi-urban environment. The Saxmundham site is 13 km and the Woburn site 120 km from the coast; both are in rural environments. Precipitation is acidic at all three sites, with a pH of 4.3 at Rothamsted and 5.0 at Saxmundham and Woburn at present, but the pH has been increasing. Precipitation chemistry is chiefly controlled by sea-salts (Na, Mg, Cl) and earth salts (K, Ca, Mg, NH4, N03). Sea-salts dominate near the coast at Saxmundham, but earth salts become much more important inland at Rothamsted and at Woburn. The concentration and deposition of non-sea Cl are increasing at Rothamsted and Saxmundham, those of non-sea SO4-S are increasing at Woburn, and those of NO3-N are increasing at all of the sites. Precipitation acidity is associated chiefly with non-sea SO4, and only a little with NO3 and non-sea Cl, at Rothamsted and Woburn. At Saxmundham, no correlation between acidity and anions is observed, presumably because of the overwhelming effect of sea-salts.  相似文献   

20.
Fog water and precipitation were collected and analyzed to study fog and precipitation chemistry. The research was carried out through one year from April 1997 to March 1998 at Mt. Rokko in Kobe. Higher fog occurrence and larger volume of fog water were observed in summer, corresponding to the trend of seasonal variation in precipitation amount. The annual mean pH value of fog water (3.80) was lower by ca. one pH unit than that of precipitation (4.74). The concentration of chemical species in fog water was ca. 7 times that in precipitation. The highest anion and cation concentrations were SO4 2? and NH4 + in fog water and Cl? and Na+ in precipitation, although the Cl?/Na+ equivalent ratio in both fog water and precipitation was almost the same value as that in sea water. It is considered that in the longest fog event, NH4 + and nss-SO4 2? in fog water mainly scavenged as (NH4)2SO4, mainly derived from (NH4)2SO4 (aerosol) in the atmosphere, NH3 was scavenged at the growing stage, and SO2 was also scavenged after the mature stage. NO3 ? in this fog event was mainly absorbed as HNO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号