首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
The deposition of strong acids is one of many threats to forest ecosystems and viable forestry. Several counteractions against acidification have been launched, e.g. changes in forestry management and the introduction of chemicals. The inter-institutional programme “Counteractions Against Acidification in Forest Ecosystems” was established in 1993 to evaluate existing knowledge and run experimental and fullscale field experiments. A total of 240 metric tons of coarse dolomite powder was spread by helicopter in September 1994 on 84 ha forest catchment dominated by pine (Pinus sylvestris) and Norway spruce (Picea abies). Potential desirable and undesirable effects after this carbonate application may be less pronounced than recorded at other sites due to the relatively moderate dose (3 tons ha?1). Pre-liming stream water quality (mean values for May 1993-September 1994) was as follows: pH 4.8; Ca 1.13 mg L?1; reactive Al (RAl) 248 μg L?1; inorganic monomeric Al (Al) 72 μg L?1. The reference station was slightly higher in Ca and slightly lower in both RAl and Al. Dolomite application resulted in a significant increase in pH to 5.7 as mean value for the post-liming period (September 1994-April 1995). Both Ca and Mg increased significantly after liming, and both RAl and Al, declined significantly. The rapid detoxification of stream-water may be explained by dissolution of dolomite particles in both streams and catchment, a resulting pH increase and change in Al species composition. Retention of Al in the catchment probably explains the reduction in RAl. No increase in NO3, total N, total P or TOC was recorded the first seven months.  相似文献   

2.
Aluminum concentrations were measured in surface waters, pore waters and surface peats of 15 wetlands in south-central Ontario. Wetlands were grouped floristically and chemically as mineralpoor, moderately-poor or mineral-rich fen. Mineral-poor fens were dominated bySphagnum, were low in alkalinity (0.31μeq L?1) and pH (4.5–6.3). Moderately-poor fens had a mixture of vegetation (Sphagnum, sedges and grasses), mid-alkalinity (23–91μeq L?1) and pH (5.8–6.4). Mineral-rich fens were dominated by sedges and grasses, had high alkalinity (104–181μeq L?1) and circumneutral pH (6.2–6.3). Surface water Al concentrations were less in mineral-poor versus moderately-poor and mineral-rich fens (F=32.0; P<0.05). Pore water Al concentrations were lower in 4 of 5 mineral versus the mineral-rich fens (F=92.15; P<0.05). In all but two cases pore water Al (all species <0.2μm) were greater within the fen peats versus the overlying surface waters suggesting that peats could act as a source of Al to the overlying waters. In all wetlands, 70 and 30% of peat Al was recovered by a hydroxylamine hydrochloride/acetic extract (primarily inroganic) and an ammonium hydroxide extract (primarily organic), respectively. Differences in “extractable” Al recovered by the two reagents (i.e., inorganic+organic Al) among the 15 wetlands were independent of wetland type. Distribution coefficients, k d , were different among the 3 types of wetlands (F=25.0; P<0.05) with theSphagnum dominated mineral-poor fens containing higher values versus the sedge and grass dominated mineral-rich fens. Lower surface and pore water concentrations of Al in mineralpoor versus mineral-rich fens may in part be a result of differences in the degree of minerotrophic influences between the two types of peatlands. As well, the greater binding capacity ofSphagnum peat as indicated by higher k d 's in the mineral-poor fens, may have contributed to the observed lower pore water and surface water Al concentrations in mineral-poor versus mineral-rich fens. It has been postulated that anthropogenic acidification of peatlands will accelerate the transformation of a mineral-rich fen to that of a mineral-poor fen and ultimately to bog. Changes in Al geochemistry that may ensue as this transition occurs include decreases in pore and surface water Al concentrations with concurrent increases in peat bound Al.  相似文献   

3.
Temperature affects the solubility of Al(OH)3(s), the solubility product formed, the hydrolysis and molecular weight distribution of aqueous Al species as well as the pH of the solutions. In the present work, identical solutions of inorganic Al (400, 600, and 800 μg Al L?1) were stored for 1 mo at either 2 or 25 °C. In the solutions stored at 25 °C pH varied from 4.83 to 5.07, while in the corresponding solutions stored at 2 °C pH varied from 5.64 to 5.78. In spite of the relatively low pH at 25 °C, significant amounts of high molecular weight Al species were precipitated from the solution and the solubility product (log* K s ) of (Al(OH)3) (s) was low (9.0). Substantial amounts of high molecular weight Al species were also formed at 2 °C, but the majority was present as colloids in the solution. The solubility product (converted from 2 into 25 °C) was 10.2, reflecting a solubility product of an amorphous (Al(OH)3)(s) phase. The different physico-chemical forms of Al present at 2 and 25 °C should have relevance for water/soil chemistry modeling.  相似文献   

4.
S. Bruckert 《Geoderma》1979,22(3):205-212
The Fe/Al ratio from pH 9.5 buffered tetraborate extract is proposed as a test to classify the “sols bruns ocreux” and “sols cryptopodzoliques”, which are hard to classify in situ according to morphological characteristics. Determined from AB or ABh horizons, the Fe/Al ratio is significantly less than 1 in “sols bruns ocreux” and more than 1 in “sols cryptopodzoliques”.  相似文献   

5.
Abstract

Growing evidence of positive crop responses to gypsum or phosphogypsum (PG) application in acid soils strongly support the use of these amendments as an ameliorant of subsoil acidity. Although gypsum improves Ca availability in subsoils, its role in alleviation of Al toxicity needs careful attention. In the current study, either PG, CaSO4.2H2O or CaCl2.2H2O was added (to supply 12 mM Ca) to solutions containing 40 μM Al at pH 4.1 + 0.1. Solution pH was gradually raised to 4.5, 4.8 and then to 5.3 at various time intervals during 25 d aging of the solutions at 25 + 1OC.

Concentration of Al measured by aluminon method without preacidification and preheating, referred to as “reactive Al”; in this paper, was 16 μM in 2 g L‐1PG solution without added Al. This accounted 38% of total soluble Al in PG solution. Addition of 2 g L‐1PG to solution containing 40 μM Al, resulted in only 42% of total Al in solution present in forms reactive with aluminon. According to MINTEQ speciation model, Al in solution was present as an entirely complexed form with F. An increase in solution pH up to 5.3 had no effect on measured concentration of reactive Al or predicted distribution of Al species.

Addition of CaSO4.2H2O to 40 μMAl solutions had no effect on the concentration of reactive Al within pH 4.1 ‐4.8, however, up to 62% of total Al was in a form complexed with SO4 2‐, as predicted by MINTEQ model. The concentration of reactive Al decreased by 60% at pH 5.3. Addition of CaCl2.2H2O also had no effect on the concentration of reactive Al within pH 4.1 ‐ 4.8. Nearly 73 ‐ 94% of total Al was present in Al3+form. An increase in pH to 5.3, decreased the concentration of reactive Al by 27%. The results suggest that ion‐pairing of Al with Fwould appear to be a possible mechanism for alleviation of Al toxicity by PG at pH range 4.1 ‐ 5.3. With regard to CaSO4.2H2O, at pH 4.1 ‐ 4.8 ion‐pairing with SO.4 2‐appears to be possible mechanism for the alleviation of Al toxicity. In addition, at pH 5.3 a considerable decrease in reactive Al was evident which would further alleviate Al toxicity.  相似文献   

6.
After liming of twelve acidified rivulets in central Sweden, the fauna increased its mean similarity to the fauna in unlimed non-acidified references. All species which were found after liming were also found in other waters north and south of the limed area. The species composition after liming should thus be considered as typical of the limed geographical area. Before liming, the fauna was characterized by the acid tolerant mayfly Leptophlebia spp. After liming the fauna was characterized by the acid sensitive mayfly genus Baetis, an important food organism for young brown trout. The restoration of the water quality by liming resulted in an apparently “pristine” benthic invertebrate community, enhancing the conditions for salmonid fish.  相似文献   

7.
Acidified surface waters often show elevated aluminium (Al) levels, detrimental to fish and some invertebrates. Whether Al can accumulate in benthic invertebrates, with time and/or along the food chain, is not clear. To test this, benthic invertebrates, representing different functional feeding groups, were collected in spring from streams, with different acidity and Al concentrations. Weight-specific Al content was determined with an AAS. At localities with pH ≈ 4, high Al contents (≈ 1 mg inorg-Al g?1 af dw) were found in shredders and/or deposit feeders (Asellus aquaticus, Nemoura sp., and limnephilids), while the predator Isoperla grammatica contained only ≈ 0.3 mg Al g?1, and the “filtering predator” Plectrocnemia conspersa almost no Al. Also at pH ≈ 6 Nemoura sp. and limnephilids showed significantly higher Al contents than did the predators Isoperla grammatica and Rhyacophila nubila, Al concentrations of the animals were often higher at pH 4 than at pH 6. Thus, no evidence of any food chain accumulation (or biomagnification) of Al could be validated. Accordingly, this study gives no support that the high concentrations of Al in fish and birds are due to their feeding on benthic invertebrates at low pH conditions. It was also found that animals that inhabit and/or consume benthic detritus as food contain highest Al levels.  相似文献   

8.
The respiratory, acid-base, and ionoregulatory responses of juvenile rainbow trout (Salmo gairdneri) were monitored during exposure of the fish in the laboratory to inorganic Al (2.8 μM) over the pH range 4.0 to 6.5. Responses to Al were most severe at pH 6.1 and 4.5, mortality being primarily due to asphyxia at pH 6.1 and to electrolyte loss at pH 4.5. Competition between the H+-ion and Al for binding at the gill surface is offered as an explanation for the decreased toxicity of Al at pH 4.0, one which is compatible with the free-ion toxicity model that has been developed for other metals. The physiologically distinct response of S. gairdneri to Al at pH 6.1 is less amenable to unambiguous interpretation. If a mixed ligand hydroxo-Al complex is incorporated in the free-ion model, and if it is assumed that the two Al species, [Al-L-gill] and [HO-Al-L-gill], provoke distinct toxicological responses, then a bimodal toxicological response to Al is indeed predicted. An alternative explanation of the apparent toxic action of Al at pH 6.1, i.e., at pH values close to that of minimum Al solubility, is the precipitation of solid Al(OH)3 at the gill surface, i.e., a ‘physical’ effect rather than a biochemical one.  相似文献   

9.
Standard white oat genotypes were subjected to different methods and aluminum (Al) levels under hydroponic conditions to verify the relationship between plantlet characteristics and their Al tolerance using multivariate analyses. A completely randomized design with three replications was used, adopting three evaluation protocols: “complete nutrient solution” with 0, 8, 16, and 32 mg L?1 of Al supplied as aluminum sulfate [Al2(SO4)3·18H2O]; “complete nutrient solution” with 0, 8, 16 and 32 mg L?1 of Al supplied as aluminum chloride (Al2Cl3?6H2O); and the “minimum nutrient solution” with 0, 1, 3, and 5 mg L?1 of Al supplied as Al2Cl3?6H2O. The performance of white oat plantlet genotypes subjected to excess Al in hydroponic conditions is greatly associated with root length, where the nutrient solution composition and the Al sources interfere in these associations. The study based on the joint analysis of characteristics at plantlet level does not allow an efficient discrimination of Al-tolerant and Al-sensitive white oat genotypes.  相似文献   

10.
Abstract

A great deal of information on the efficiency of gypsum or phosphogypsum to ameliorate acidity in highly weathered soils is available, but only limited information is available on the efficiency in acid Andosols, which possess large amounts of active aluminum (Al). We examined the effectiveness of gypsum application to non-allophanic Andosols (one humus-rich A horizon and two B horizons poor in humus) using extractable soil Al analyses (batch and continuous extraction methods) and a cultivation test using burdock (Arctium lappa). With gypsum amendment, pH(H2O) values of the soil decreased from 4.5–4.7 to 4.2–4.4, whereas the treatment made almost no difference to the values of pH(KCl). Total active Al (acid oxalate-extractable Al) was hardly affected by gypsum for all samples. Potassium chloride-extractable Al definitely decreased with the addition of gypsum in all soils; however, the decrease was small (0.1–1.4 cmolc kg?1) and the values still exceeded “the threshold of 2 cmolc kg?1” for inducing Al toxicity in sensitive plants (4.4–8.6 cmolc Al kg?1). The change in Al solubility with gypsum application represented by Al release rates from soils using continuous extraction methods with a dilute acetate buffer solution (10?3 mol L?1, pH 3.5) differed greatly among the soil samples: The release rate of one of the B horizon samples decreased by 71%, certainly showing the insolubilization of Al compounds, whereas the release rates of the A horizon sample showed almost no change. These changes in Al solubility were well correlated with the plant root growth. Root growth was improved with gypsum in the B horizon sample, whereas improvement was not observed in the A horizon soil. The decrease in the rate of Al release of another B horizon soil with gypsum treatment was smaller (by 20–34%), possibly because of lower pH values after gypsum application (pH[H2O] of 4.2–4.3). In the B horizon soil, root growth improved only slightly. Thus, the effectiveness of gypsum application to acid Andosols appeared to be largely influenced by soil humus contents and slight differences in soil pH values, and corresponded to a decrease in Al release rates using the continuous extraction method.  相似文献   

11.
Field experiments were conducted in 1992 and 1993 to examine effects of soil acidity on growth and N2 fixation by “Serala”; sericea lespedeza [Lespedeza juncea (L.F.) var. sericea (Mig.)]. Effects of acidified soil on N2 fixation could not be determined because nodulation was suppressed, apparently by sufficient availability of N. Apparently‐suppressive, mean 1993 levels of KCl‐extractable NH4 and NO3 in zero nitrogen (N) control treatments were 20 and 13 mg‐kg‐1, respectively. In soil acidified with sulfur (S), growth of sericiea lespedeza was significantly reduced (PO.05) when the concentration of water‐extractable Mn exceeded 1.3 mM or calculated Mn2+ activity exceeded 0.4 mM. This occurred at pH values of 4.1 to 4.3 depending on S treatment. At a given value of pH, shoot dry weight production was greater in S‐amended soil than in Al2SO4‐amended soil. Reduced growth in the latter did not appear to be directly related to higher measured levels of toxic Al but may have been caused by a combination of aluminum (Al), hydrogen (H), manganese (Mn), and phosphorus (P) effects. Lespedeza growth was lowest in nonacidified soil with pH values near 6.0, indicating a preference for acid soils by the variety “Serala.”; The demonstrated tolerance of sericea lespedeza to acid soils make it a valuable reclamation species. However, Mn may inhibit growth in acidic soils when the activity of water‐extractable Mn2+ exceeds 0.4 mM, and it may not fix appreciable N2 unless available soil N is quite low.  相似文献   

12.
The effects of artificial rain of various acidities were studied in a lysimeter experiment. Lysimeters, 29 cm in diameter, and 40 cm deep contained a Gleyed Dystric Brunisol. Natural structure, stratification and original vegetation were maintained. Artificial rain was produced from groundwater with “high” concentrations of neutral salts and from rainwater with lower concentrations. pH levels of 6, 4, 3 and 2 were established by adding H2SO4. Effects of dilution with given amounts of acid were examined by comparing the effects of 50 mm “rain” month?1 of pH 3 and pH 2 with 500 mm “rain” month?1 of pH 4 and pH 3, respectively. The study continued for 5 yr. Totals of 1250 or 12500 mm “rain” were applied in addition to a natural input of 2773 mm. Increased input of SO4 2? increased the output of SO4 2? but, as concentration increased, sorption of SO4 2? in the soil also increased. Concentrations of base cations in the leachate increased parallel to the output of SO4 2?. However, significant effects on leaching of base cations and on the content of exchangeable cations in the soil, was only found in the pH 2 treatment with 1250 mm of “rain” and in the pH 4 and pH 3 treatment with 12500 mm of “rain”.  相似文献   

13.
Little Rock Lake was experimentally acidified in 1984–1990 during which sulfuric acid was added to one basin, decreasing pH from 6.1 to 5.6, 5.1 and 4.7. The lake has been allowed to recover without manipulation since autumn 1990. By the third year of recovery, ~40% of the change necessary to return to pre-acidification values of pH, acid neutralizing capacity (ANC), sulfate (SO4 2?) and calcium (Ca2+) had occurred. During recovery years 1–2, ANC was closely predicted by models based on acidification phase observations, but recovery during years 3–4 was slower than predicted. A possible explanation for the slowed recovery is acidification of the upper 0–5 cm of sediment, which acts as a sink for the ANC generated via SO4 2? reduction, the primary recovery mechanism. Trends for Zooplankton did not follow pH recovery very closely. Species diminished by acidification (e.g. Keralella cochlearis, Daphnia dubia) have not recovered, but species that dominated the community at pH 4.7 (e.g. K. taurocephala, D. catawba) have not maintained high populations. The time required for the Zooplankton community to recover to pre-manipulation conditions is uncertain. Delays also have been observed for the mayfly species Caenis, which had disappeared at pH 4.7. In contrast, reproductive success of largemouth bass (Micropterus salmonides) mirrored that observed during acidification; egg hatch and survival of young-of-the-year to autumn recurred when pH exceeded response levels documented during acidification. Overall, recovery has not closely followed the pattern predicted by acidification responses.  相似文献   

14.
Mineralization of soil organic matter and of added 14C labelled substrates were studied on samples from two acidic forest soils, “Cademario”-sample from the Bh-horizon of a cryptopodzolic soil rich in humus and nonexchangeable Al and “Sagno”-sample from the A-horizon of a Haplumbrept with moderate humus- and Al-content. The respiration rates for the two soils were not different when related to the content of organic matter. When treated with Na2CO3, the CO2 production rate in the Sagno soil increased about three fold whereas no significant difference was observed for Cademario samples. This is attributed to the more pronounced dissolution of organic matter due to the pH increase in the Sagno soil. N-mineralization was different in the two soils. During a 28 day incubation period, 0.11% and 0.34% of the total organic N was released in the Cademario and Sagno samples, respectively. Na2CO3 treatment stimulated N-mineralization in both soils but the mineral N-form was primarily nitrate in the Sagno sample and ammonium in the aluminum-rich sample from Cademario. Glucose, succinate and salicylate added to the soils were mineralized in this order. However, CO2 evolution was much slower in the case of salicylate, especially in the untreated soils, a fact which is attributed to the Al-complexing power of this substrate.  相似文献   

15.
Although extreme climatic events such as drought have important consequences for belowground carbon (C) cycling, their impact on the plant-soil system of mixed plant communities is poorly understood. Our objective was to study the effect of drought on C allocation and rhizosphere-mediated CO2 fluxes under three plant species: Lolium perenne, Festuca arundinacea and Medicago sativa grown in monocultures or mixture. The conceptual approach included 14CO2 pulse labeling of plants grown under drought and optimum water conditions in order to be able to follow above- and belowground C allocation. After 14C pulse labeling, we traced 14C allocation to shoots and roots, soil and rhizospheric CO2, dissolved organic carbon (DOC) and microbial biomass.Drought and plant community composition significantly affected assimilate allocation in the plant-soil system. Drought conditions changed the source sink relationship of monocultures, which transferred a relatively larger portion of assimilates to their roots compared to water sufficient plants. In contrast, plant mixture showed an increase in 14C allocation to shoots when exposed to drought.Under drought stress, root respiration was reduced for all monocultures except under the legume species. Microbial respiration remained similar in all cases showing that microbial activity was less affected by drought than root activity. This may be explained by strongly increased assimilate allocation to easily available exudates or rhizodeposits under drought. In conclusion, plant community composition may modify the impact of climatic changes on carbon allocation and belowground carbon fluxes. The presence of legume species attenuates drought effects on rhizosphere processes.  相似文献   

16.
A clearcut stand of Pinus sylvestris in Flanders (Belgium) was limed with 3 ton/ha dolomite and reforested with Acer pseudoplatanus and Fagus sylvatica. Soil water monitoring revealed an overall decrease of ion concentrations and an annual peak in September due to seasonal nitrification. Liming reduced concentrations of NO3 - and Al3+ and raised concentrations of K+ and Mg2+ and the molar ratio of (Ca+Mg)/Al. Liming also stimulated release of SO4 2-, which prevented a rise of pH, except during nitrification peaks. Liming had no effect on height increment of Fagus but stimulated Acer, which suffered from severe deficiencies of calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) without treatment. Nitrogen (N) was not growth-limiting for Fagus or Acer and liming had no effect on N concentrations in leaves of both species. Liming had a strong impact on ground vegetation. Nutrient-demanding species expanded while species that tolerate nutrient-poor conditions decreased. It is argued that changes in ground vegetation had a greater impact on reduction of NO3 - concentration in soil water than increased tree growth.  相似文献   

17.
To evaluate the interaction between anionic species when they were adsorbed on variable charge soils, we measured the adsorption of NO3 - and SO4 2- on. an Andisol equilibrated with a mixture of KNO3 and K2SO4 solutions. The amount of NO3 - adsorption declined with the increase in the concentration of SO4 2-. On the other hand, the amount of SO4 2- adsorption increased with the increase in the concentration of NO3 -. These phenomena can not be explained by the simple “exchange theory” or the “Three-plane model” unless surface complexation is associated with the changes in the electrical potential of the surface. Therefore, in order to explain the phenomena by using the “Four-plane model” with surface complexation, a new equation was derived for the Diffuse Double Layer (DDL) charge from the “main equation of DDL theory” (equation of electrical potential in DDL) instead of the “Gouy-Chapman equation,” which can be used only for single symmetric electrolytes but nor for a mixture. By introducing the new equation to the computer program for analyzing the Four-plane model, the interaction between anionic species adsorbed on Andisols could be explained well. It was considered that SO4 2- acted as a regulator for the ionic concentration, osmotic pressure and pH of the soil solution, and consequently, these factors affected the vertical distribution and mobility of anionic species and also the mobility of counter-ions in Andisols.  相似文献   

18.
The rate of respiration of radioactive CO2 from fasting Oniscus asellus L. during 7.5 days was qualitatively similar for ring-labeled and carboxyl-labeled benzoic acid. The rate of respiration of ring-labeled benzoic acid during 7 days was quantitatively similar for isopods that were fed throughout, and had received 0.09 μg benzoic 1-14C acid with or without a “load” of 30 μg of unlabeled benzoic acid. The “loaded” animals displayed a qualitative difference in respiring greater quantities of CO2 at night vs day.At 15°C in July, 24.4 per cent of the radioactivity from an injected dose of benzoic l-14C acid was respired over a 7 day period; 1.3 per cent was excreted; 1.9 per cent was present as carbonates; 5.4 per cent was ether-extractable, of which 48 per cent was chromatographically accountable as benzoic acid; and 56.7 per cent of the label was retained in the body.Ring-labeled carbon from benzoic acid was incorporated into the tissues of the isopod. An analysis of a hydrolyzate from the soluble cellular fraction showed at least six identifiable amino acids and four unidentifiable components.  相似文献   

19.
By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-s) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how δ13CR-s is affected by both contributions of multiple carbon sources to respiration and fractionation due to soil gas transport. In this study, we measured potential isotopic sources to determine their contributions to δ13CR-s and we performed a series of experiments to investigate the impact of soil gas transport on δ13CR-s estimates. The objectives of these experiments were to: i) compare estimates of δ13CR-s derived from aboveground and belowground techniques, ii) evaluate the roles of diffusion and advection in a forest soil on the estimates of δ13CR-s, and iii) determine the contribution of new and old carbon sources to δ13CR-s for a Douglas-fir stand in the Pacific Northwest during our measurement period. We found a maximum difference of −2.36‰ between estimates of δ13CR-s based on aboveground vs. belowground measurements; the aboveground estimate was enriched relative to the belowground estimate. Soil gas transport during the experiment was primarily by diffusion and the average belowground estimate of δ13CR-s was enriched by 3.8-4.0‰ with respect to the source estimates from steady-state transport models. The affect of natural fluctuations in advective soil gas transport was little to non-existent; however, an advection-diffusion model was more accurate than a model based solely on diffusion in predicting the isotopic samples near the soil surface. Thus, estimates made from belowground gas samples will improve with an increase in samples near the soil surface. We measured a −1‰ difference in δ13CR-s as a result of an experiment where advection was induced, a value which may represent an upper limit in fractionation due to advective gas transport in forest ecosystems. We found that aboveground measurements of δ13CR-s may be particularly susceptible to atmospheric incursion, which may produce estimates that are enriched in 13C. The partitioning results attributed 69-98% of soil respiration to a source with a highly depleted isotopic signature similar to that of water-soluble carbon from foliage measured at our site.  相似文献   

20.
NH4-F extractable P in Pelosols and Cambisols The percentage of “Al-P” of the extractable inorganic P (∑“Al”-+“Fe”-+“Ca-P”, following the Chang and Jackson method) was assumed to be higher at the same pH in soils from basaltic parent material (as a result of an early Al supply from tektosilicates and slow clay formation) than in soils from clay-stone parent material. Contrary to this assumption, the percentage was (with one exception) not higher, probably because of an “Antivariscite-effect” by the 2:1 (clay) minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号