首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
为了提高电动汽车电液复合制动中液压制动压力的控制精度以及规划两种制动力矩,设计了一种基于轮速误差电液复合制动防抱死系统(ABS)控制方法。该方法使用模糊PID联合前馈控制作为上层控制器,采用电液制动力矩分配控制算法作为下层控制器,最后进行ADAMS与Simulink联合仿真。仿真结果表明,提出的上层控制器算法能将滑移率控制在20%附近,在保证可操纵的同时提升了制动能力;提出的下层控制器的电液制动力矩分配控制算法能有效地减少液压阀的开启和关闭,且控制精度高,响应快。  相似文献   

2.
胡东海  何仁 《农业机械学报》2015,46(11):360-368
为了深入研究电磁与摩擦集成制动系统防抱死控制机理,提高其在紧急制动下的防抱死控制性能,在建立电磁与摩擦集成防抱死制动模型的基础上,根据电磁制动与电子液压制动各自制动控制特性,提出了电磁与摩擦集成制动系统防抱死制动分层协调控制方法。在硬件在环仿真平台上验证了数学模型的有效性,并在模拟干燥沥青路面、冰雪路面以及对接路面环境下,对比研究了电磁与摩擦集成制动系统、高性能电子液压制动系统和低性能电子液压制动系统的防抱死制动性能。结果表明:在防抱死控制过程中使用电磁制动取代低性能电子液压制动系统控制车轮最佳滑移率,仅使用低性能电子液压制动提供一定的制动强度,完全可以实现与高性能电子液压制动系统相同甚至更优的防抱死控制效果。  相似文献   

3.
针对滑模变结构控制方法能较好地解决汽车防抱死制动系统的非线性问题,以及其固有的抖动会影响控制效果的问题,本文采用一种基于指数趋近律的滑模控制方法,设计了两轮车辆的防抱死制动系统滑模控制器,并在Matlab/S imu link里进行了仿真。仿真结果表明了该控制策略可以有效地抑制传统滑模控制系统的抖动现象,达到更好的控制效果。  相似文献   

4.
以半挂汽车列车为研究对象,建立整车数学模型、轮胎模型、PID控制器模型、气压系统模型和滑移率的计算模型。对所建立的半挂汽车列车防抱死制动系统数学模型进行仿真研究,得出在干路面、湿路面和冰路面上的仿真曲线。仿真结果表明,建立的防抱死制动系统数学模型可靠,能达到较为理想的制动控制效果,验证了半挂汽车列车防抱死制动系统具有良...  相似文献   

5.
为了在汽车防抱死过程中充分发挥电磁制动反应迅速、非接触制动的优点,通过试验数据,应用自适应模糊神经网络设计出路面识别器来获得最佳滑移率和峰值附着系数,以最佳滑移率为控制目标,采用模糊控制方法实现电磁-摩擦集成制动器的防抱死功能。结果表明,路面识别器识别准确,防抱死制动响应迅速,制动过程平稳,与传统逻辑门限值控制的摩擦制动相比防抱死制动性能得到提高。  相似文献   

6.
分析了农用车辆使用制动防抱死系统的可行性,研究了复杂路面农用车辆制动防抱死系统仿真模型和仿真试验控制问题,建立了1/3农用三轮车制动动力学模型、复杂路面附着条件模型、农用三轮车仿真模型和复杂路面仿真模型,提出了两种制动工况下的仿真试验方法,准确模拟出农用车辆在复杂路面制动时车速与轮速曲线变化情况,验证了复杂路面ABS控制的有效性。  相似文献   

7.
提出一种基于再生制动系统与ABS系统的集成控制方式,将汽车的再生制动融入到ABS制动防抱死系统中。在非紧急制动的过程中,优先采用再生制动力来提供汽车所需的制动力;而在紧急制动时,为了保障制动安全,撤出再生制动力。在Simulink中搭建仿真模型,并选择中低附着系数路面中度制动车轮抱死工况和对接路面中度制动两种工况进行模拟,仿真结果表明,该控制策略既可以保证制动安全,又可以回收制动能量,实现了再生制动系统与ABS制动系统良好匹配。  相似文献   

8.
1.制动系统警告灯的辨认 对于装备制动防抱死系统(ABS)的汽车,ABS控制单元(EBCM)不断监测自身和其他防抱死制动部件的工作状况,如果发生异常,警告灯点亮,以提醒驾驶人。电控汽车制动系统的警告灯分为以下两种:(1)黄色(或琥珀色)ABS警告灯。  相似文献   

9.
为提高车辆在危险工况下的防侧翻性能,本文利用差动制动及主动转向两种控制方式对车辆进行防侧翻最优控制研究。在系统动力学模型和相关轮胎模型的基础上,利用模糊控制方法设计控制系统的上层控制器,利用防止车辆侧翻所需的矫正横摆力矩,采用主动转向和差动制动协调控制从而得到最佳矫正横摆力矩的方法来控制车辆的侧翻,并进行了仿真分析。结果表明,运用这两种控制方式对车辆进行最优控制时,两种控制方式产生的矫正横摆力矩达到最优,有效地降低了车辆在弯道路段的侧向加速度,提高整车的防侧翻性能,能够快速准确地使车辆恢复稳定。利用Matlab对控制系统进行了仿真与分析,仿真结果验证了所提出控制方法及控制策略的有效性,与未采用防侧翻控制系统的仿真结果相比,整车的主动安全性得到提高。  相似文献   

10.
汽车主动前轮转向和防抱死制动协调控制   总被引:2,自引:1,他引:1  
针对汽车转向制动工况提出了一种主动前轮转向和防抱死制动系统的协调控制方法.分别设计了转向控制器和制动系统控制器,在分层协调控制思想的基础上建立了上层协调控制器,对两个系统进行协调控制.仿真结果表明:采用此控制策略对主动前轮转向和防抱死制动系统进行控制,能够改善车辆的操纵稳定性和制动性能:车身横摆角速度均方根值由0.046 1 rad/s降为0.038 2 rad/s,车身横向加速度均方根值由0.935 2 m/s2降为0.788 6 m/s2,制动距离由23.984 5 m减小为23.1092 m,前轮滑移率均方根值由0.1968增为0.1975,后轮滑移率均方根值由0.196 5增为0.198 1.  相似文献   

11.
梁硕  郅芬香 《农机化研究》2021,43(2):246-250
为了提高农用车辆在紧急制动时的安全性,将模糊PID和嵌入式系统引入到了车辆防抱死制动系统中,通过PID反馈调节和模糊规则控制轮胎的滑移率,可以提高防抱死系统控制的控制精度和响应速度.为了验证该方法的可行性,以东方红拖拉机作为实验对象,对车辆安装模糊PID控制器前后的制动性能进行了测试.试结果表明:采用模糊PID控制器后...  相似文献   

12.
针对防抱死系统的主动安全仿真策略   总被引:1,自引:0,他引:1  
在Simulink的环境下创建防抱死制动系统ABS两自由度单轮模型,以滑移率为被控对象,根据ABS原理,运用Bang-Bang控制和PID控制进行模拟,由不同的控制方法得出不同的仿真结果,比较分析汽车制动时的方向操纵稳定性及制动性能对汽车主动安全的影响。  相似文献   

13.
制动器惯性试验台的改进设计   总被引:1,自引:1,他引:1  
通过增加一个模拟路面的滚筒、车轮驱动电机及车轮和滚筒间的压紧油缸等关键装置,并对控制系统进行了重新设计来满足新系统要求,使普通汽车制动器惯性试验台在保留原有功能不变的基础上,能够进行单个车轮的防抱死制动(ABS)和驱动防滑(ASR)试验。  相似文献   

14.
车辆动力学集成控制综述   总被引:9,自引:8,他引:9  
首先对车辆动力学集成控制的发展和研究进行了全面回顾,然后对集成控制系统的协调策略进行了总结.为进一步提高车辆主动安全性的潜力,未来研究的重点仍将是对转向和制动/驱动的集成控制,其中一个典型的研究问题是在考虑轮胎和车辆非线性以及执行器限制条件的基础上,将车辆稳定控制力/力矩最优地分配到每个车轮/轮胎上.显然,随着未来线控驾驶以及新型可控系统的广泛应用,车辆动力学控制的集成化必然成为发展趋势.  相似文献   

15.
基于道路自动识别ABS模糊控制系统的研究   总被引:25,自引:4,他引:25  
道路状况自动识别是保证车辆防抱制动系统(ABS)正常工作的前提,本文提根据制动压力,滑移率和车轮减速度进行道路自动识别的方法,并依此设计了ABS模糊控制器,结合7自由度车辆模型,考虑悬架和轮胎的非线性影响,对单一附着系数路变附着系数路面进行了ABS制动模拟试验,试验结果表明,基于路面自动识别ABS模糊控制系统能准确判断出路面状况的变化,据此调整控制策略,使车辆获得最大地面制动力和较好的横向稳定性,对比试验证明它优于传统PID控制,且具有较强的鲁棒性。  相似文献   

16.
针对现行电动汽车再生制动的不足,提出一种新型电磁机械耦合再生制动系统(EMCB),进行了动力学分析和耦合机理研究;针对目前传统ABS离散开关控制的不足,基于EMCB系统和模糊自适应滑模控制提出了一种连续状态控制的ABS控制策略,以对接路面下的车辆直行制动工况和低附路面下的弯道制动工况为例,对车轮滑移率、制动能回收率、制动稳定性等进行了仿真分析。研究结果表明,所提出的ABS控制策略具有良好的响应性、鲁棒性和滑移率控制性能,既保证了制动稳定性和制动效能,又提高了制动能回收率,有效增加了电动汽车的续驶里程。  相似文献   

17.
轮胎侧向力影响因素试验   总被引:2,自引:0,他引:2  
轮胎侧向力与轮胎侧偏角、垂直载荷、车轮外倾角、纵向滑移率、轮速及胎压等因素直接相关,是车辆横向动力学重要的组成部分.通过对轮胎试验数据整理分析,阐述了车轮侧向力与各种影响因素间的关系.随着轮胎侧偏角的增大,车轮侧向力呈现很强的非线性.随着垂直载荷的增大,车轮侧向力不会呈比例增大.由于侧向力与侧偏角及垂直载荷间的非线性关系对车辆行驶性能及悬架调校非常重要,应用计算实例描述了载荷变化的影响.车轮外倾角与侧向力间的关系对悬架外倾角补偿特性非常重要,对此进行了计算说明.  相似文献   

18.
首先分析了汽车电控机械制动系统的控制原理、目标,然后建立了车辆制动动力学模型,包括整车模型、轮胎模型、电控机械制动系统模型等,分析了典型路面较高车速制动的特点。建立了基于理想轮胎滑移率跟踪的PID控制模型,分析了不同参数对控制性能的影响。以理想轮胎滑移率跟踪误差均方根为目标函数,采用遗传算法优化PID控制参数。结果表明,较好地跟踪了目标滑移率,提高了制动效能和制动时的方向稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号