首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The generation of adenosine 3',5'-monophosphate (cyclic AMP) in response to catecholamines in the 2B subclone of RGC6 rat glioma cells previously exposed to norepinephrine and refractory to further norepinephrine addition is substantially increased by addition of inhibitors of RNA and protein synthesis. The time course of the effect of these inhibitors on cyclic AMP concentration suggests that rapid protein synthesis and turnover are involved in catecholamine refractoriness. Norepinephrine induction of cyclic nucleotide phosphodiesterase is demonstrable in RGC6 cells but not in the 2B subclone. Thus, catecholamine refractoriness cannot be attributed to induction of phosphodiesterase. This implies that induction of a protein or proteins, important in catecholamine refractoriness, affects the synthesis rather than the degradation of cyclic AMP.  相似文献   

2.
Inhibiting protein synthesis by incubating C6-2B rat astrocytoma cells with cycloheximide or emetine for periods up to 24 hours caused a progressive decrease in the accumulation of adenosine 3',5'-monophosphate (cyclic AMP) when the cells were challenged for 30 minutes with 100 microM forskolin. In contrast, cholera toxin-stimulated (6 nM, 3 hours) cyclic AMP accumulation was not diminished in cycloheximide-treated cells, and cyclic AMP was only minimally diminished in response to a 30-minute challenge with 10 microM (-)-isoproterenol. These experiments suggest the presence of a previously unrecognized cyclase component, which is essential for forskolin-stimulated cyclic AMP accumulation and has a shorter half-life than the beta-adrenergic receptor, the guanine nucleotide regulatory proteins, or the cyclase catalytic component.  相似文献   

3.
4.
DNA ligase: structure, mechanism, and function   总被引:67,自引:0,他引:67  
DNA ligase of E. coli is a polypeptide of molecular weight 75,000. The comparable T4-induced enzyme is somewhat smaller (63,000 to 68,000). Both enzymes catalyze the synthesis of phosphodiester bonds between adjacent 5'-phosphoryl and 3'-hydroxyl groups in nicked duplex DNA, coupled to the cleavage of the pyrophosphate bond of DPN (E. coli) or ATP (T4). Phosphodiester bond synthesis catalyzed by both enzymes occurs in a series of these discrete steps and involves the participation of two covalent intermediates (Fig. 1). A steady state kinetic analysis of the reaction-catalyzed E. coli ligase supports this mechanism, and further demonstrates that enzyme-adenylate and DNA-adenylate are kinetically significant intermediates on the direct path of phosphodiester bond synthesis. A strain of E. coli with a mutation in the structural gene for DNA ligase which results in the synthesis of an abnormally thermolabile enzyme is inviable at 42 degrees C. Although able to grow at 30 degrees C, the mutant is still defective at this temperature in its ability to repair damage to its DNA caused by ultraviolet irradiation and by alkylating agents. At 42 degrees C, all the newly replicated DNA is in the form of short 10S "Okazaki fragments," an indication that the reason for the mutant's failure to survive under these conditions is its inability to sustain the ligation step that is essential for the discontinuous synthesis of the E. coli chromosome. DNA ligase is therefore an essential enzyme required for normal DNA replication and repair in E. coli. Purified DNA ligases have proved to be useful reagents in the construction in vitro of recombinant DNA molecules.  相似文献   

5.
6.
7.
8.
A chemoattractant receptor controls development in Dictyostelium discoideum   总被引:39,自引:0,他引:39  
During the early stages of its developmental program, Dictyostelium discoideum expresses cell surface cyclic adenosine monophosphate (cyclic AMP) receptors. It has been suggested that these receptors coordinate the aggregation of individual cells into a multicellular organism and regulate the expression of a large number of developmentally regulated genes. The complementary DNA (cDNA) for the cyclic AMP receptor has now been cloned from lambda gt-11 libraries by screening with specific antiserum. The 2-kilobase messenger RNA (mRNA) that encodes the receptor is undetectable in growing cells, rises to a maximum at 3 to 4 hours of development, and then declines. In vitro transcribed complementary RNA, when hybridized to cellular mRNA, specifically arrests in vitro translation of the receptor polypeptide. When the cDNA is expressed in Dictyostelium cells, the undifferentiated cells specifically bind cyclic AMP. Cell lines transformed with a vector that expresses complementary mRNA (antisense) do not express the cyclic AMP receptor protein. These cells fail to enter the aggregation stage of development during starvation, whereas control and wild-type cells aggregate and complete the developmental program within 24 hours. The phenotype of the antisense transformants suggests that the cyclic AMP receptor is essential for development. The deduced amino acid sequence of the receptor reveals a high percentage of hydrophobic residues grouped in seven domains, similar to the rhodopsins and other receptors believed to interact with G proteins. It shares amino acid sequence identity and is immunologically cross-reactive with bovine rhodopsin. A model is proposed in which the cyclic AMP receptor crosses the bilayer seven times with a serine-rich cytoplasmic carboxyl terminus, the proposed site of ligand-induced receptor phosphorylation.  相似文献   

9.
Enzymatic modification of transfer RNA   总被引:12,自引:0,他引:12  
D S?ll 《Science (New York, N.Y.)》1971,173(994):293-299
The molecular events leading to the synthesis of mature tRNA are only now becoming amenable to experimental study. In bacterial and mammalian cells tRNA genes are transcribed into precursor tRNA. These molecules, when isolated, contain additional nucleotides at both ends (20) of the mature tRNA and lack most modified nucleosides. Presumably, specific nucleases ("trimming" enzymes) cut the precursor to proper tRNA size. The C-C-A nucleotide sequence of the amino acid acceptor end common to all tRNA's does not seem to be coded by tRNA genes (30), and may be added to the trimmed molecules by the tRNA-CMP-AMP-pyrophosphorylase (71). Modifications at the polynucleotide level of the heterocyclic bases or the sugar residues give rise to the modified nucleosides in tRNA. Although newly available substrates have allowed the detection of more of the enzymes involved in these reactions, there is still no knowledge about the sequence of modification or trimming events leading to the synthesis of active tRNA. Progress in these studies may not be easy because enzyme preparations free of nucleases or other tRNA modifying enzymes are required. The role of the modified nucleosides in the biological functions of tRNA is still unknown. Possibly pseudouridine is required for ribosome mediated protein synthesis; some other modified nucleosides in tRNA are not required for this reaction, but may enhance its rate. What might be the role of the large variety of modified nucleosides in tRNA? One is tempted to speculate that such nucleosides are important in other cellular processes in which tRNA is thought to participate such as virus infection, cell differentiation, and hormone action (2, 3). Mutants in a number of tRNA-modifying enzymes are needed in order to extend our knowledge of their purpose and of tRNA involvement in other biological processes. But unless tRNA-modifying enzymes specific for a particular tRNA species exist, no simple selection procedure can be devised. Possibly some of the regulatory mutants of amino acid biosynthesis may prove to affect tRNA-modifying enzymes (72). Transfer RNA's are macromolecules well suited for the study of nucleic acid-protein interactions. The tRNA molecules are structurally very similar, and they interact with a large number of enzymes or protein factors (2, 3). Each aminoacyl-tRNA synthetase, for instance, very precisely recognizes a set of cognate isoacceptor tRNA's (2, 73). The availability of the tRNA- modifying enzymes adds another dimension to the problem of the nature of specific recognition of tRNA by proteins. There are some tRNA-modifying enzymes, such as the uracil-tRNA methylase, which may recognize all tRNA species, while others, such as the isopentenyl-tRNA transferase, probably recognize only a selected set of tRNA molecules, even with different amino acid accepting capacities. With well-characterized RNA precursor and tRNA molecules we can hope to delineate those features of primary, secondary, and tertiary structure involved in the specific interactions of tRNA with these enzymes.  相似文献   

10.
Plant development: regulation by protein degradation   总被引:2,自引:0,他引:2  
Many aspects of eukaryotic development depend on regulated protein degradation by the ubiquitin-proteasome pathway. This highly conserved pathway promotes covalent attachment of ubiquitin to protein substrates through the sequential action of three enzymes called a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3). Most ubiquitinated proteins are then targeted for degradation by the 26S proteasome. Recent studies have also shown that the ubiquitin-related protein RUB/Nedd8 and the proteasome-related COP9 signalosome complex cooperate with the ubiquitin-proteasome pathway to promote protein degradation. Most of these components are conserved in all three eukaryotic kingdoms. However, the known targets of the pathway in plants, and the developmental processes they regulate, are specific to the plant kingdom.  相似文献   

11.
牛乳铁蛋白活性多肽(Lactoferricin B,LfcinB)是一种阳离子型抗菌肽,因其具有多种生物学功能,现已被认为具有能够替代传统抗生素的发展前景。然而,由于传统的分离制备方法存在诸多弊端,所以基于基因工程的原核表达技术在制备高纯度和高效表达的该蛋白方面具有极其深远的意义。研究旨在摸索出一套完整的利用原核表达技术制备LfcinB的分子生物学方法。依据大肠杆菌密码子偏爱性的原则,设计了LfcinB的基因序列,通过人工合成的方法获得该基因的优化序列,借助Bam HI和Sal I双酶切、连接等手段将其构建到原核表达载体pGEX-4T-2上,获得重组表达载体pGEX-4T-2-LCB,将该载体转化E.coli Rosetta(DE3)。使用IPTG诱导,结果发现LfcinB在大肠杆菌中表达量超过20%。通过一系列蛋白纯化技术分离得到纯度达到95%以上的LfcinB融合蛋白。抑菌试验结果表明,重组抗菌肽LfcinB融合蛋白具有很好的抑菌活性。研究结果为人们使用基因工程技术制备抗菌肽LfcinB提供了具有重要参考价值的技术路线和理论依据。  相似文献   

12.
【目的】克隆小麦籽粒胚乳14-3-3基因,并进行体外表达,为进一步研究其对籽粒生长发育的调控作用奠定基础。【方法】根据已有同源基因保守序列,设计插入限制性酶切位点的特异性扩增引物,采用RT-PCR方法扩增发育的小麦胚乳14-3-3基因,克隆测序后转入表达载体,在大肠杆菌中进行表达,并进行纯化。【结果】从开花后灌浆13-15 d的小麦品种济麦22籽粒胚乳中克隆到1个14-3-3基因,序列分析表明为非ε型,含1个777 bp的开放阅读框,编码蛋白259 aa,分子量约29 kD。核苷酸序列分析表明与小麦、水稻、玉米、大麦、大豆等主要农作物和模式植物拟南芥的14-3-3基因有较高的同源性,最高达98%,编码蛋白氨基酸长度也一致(260 aa左右);在大肠杆菌中高效表达的重组蛋白约为30 kD,分子量大小与根据核苷酸序列推导的编码蛋白一致。从基因序列的同源性、编码蛋白的氨基酸长度、表达蛋白的分子量大小分析都说明克隆到的基因为14-3-3基因,并准确插入表达载体,得到了高效正确表达。将克隆的基因插入pET29c载体,热激转化大肠杆菌BL21-CodonPlus(DE3)-RP,得到了高效表达,但主要以包涵体形式(80%)存在。对重组蛋白进行了纯化,可溶性重组蛋白利用S-蛋白琼脂糖树脂得到纯化的蛋白,包涵体重组蛋白经变性溶解、复性后,也利用S-蛋白琼脂糖树脂得到了高度纯化的重组蛋白。【结论】利用RT-PCR技术从发育的小麦胚乳中克隆到1个14-3-3基因,并在大肠杆菌中得到了高效表达,重组蛋白经过纯化得到了纯度较高的活性蛋白。  相似文献   

13.
本试验设计了M基因的特异性引物,扩增了M基因,成功构建了重组质粒,并转化至Escherichia coli BL21(DE3)感受态细胞中,优化了异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达条件.结果表明,重组表达的融合蛋白Pet-32a-M大小约为43 ku,与预期大小相符.十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)检测表明,M蛋白为包涵体蛋白,且在IPTG浓度为0.8 mmol·L-1,温度为37℃,诱导时间为8 h的条件下,蛋白表达效果最佳.蛋白免疫印迹检测结果进一步显示,重组蛋白Pet-32a-M在体外可以被成功表达.  相似文献   

14.
Female steroid hormones and target cell nuclei   总被引:58,自引:0,他引:58  
  相似文献   

15.
Pathways for the reduction of protein disulfide bonds are found in all organisms and are required for the reductive recycling of certain enzymes including the essential protein ribonucleotide reductase. An Escherichia coli strain that lacks both thioredoxin reductase and glutathione reductase grows extremely poorly. Here, we show that a mutation occurring at high frequencies in the gene ahpC, encoding a peroxiredoxin, restores normal growth to this strain. This mutation is the result of a reversible expansion of a triplet nucleotide repeat sequence, leading to the addition of one amino acid that converts the AhpC protein from a peroxidase to a disulfide reductase. The ready mutational interconversion between the two activities could provide an evolutionary advantage to E. coli.  相似文献   

16.
苦参对鸡大肠杆菌的抑菌作用及其机理研究   总被引:7,自引:0,他引:7  
【目的】阐明苦参的抑菌作用及机理,为生产实践提供理论依据。【方法】采用牛津杯法及液体倍比稀释法对鸡大肠杆菌等常见致病细菌进行了敏感性试验;通过电镜观察,SDS-聚丙烯酰胺凝胶电泳对蛋白表达的研究,生长曲线的绘制以及流式细胞仪对菌体细胞周期的分析,对苦参碱粗提物的抑菌作用及机理进行研究。【结果】苦参对革兰氏阳性菌、革兰氏阴性菌均有明显抑制作用,抑菌谱广;药物是通过抑制鸡大肠杆菌功能蛋白的表达,从而影响菌体的细胞周期,使I期菌数增加,R期菌数下降,最终菌体不能达到正常对数生长期而直接进入衰亡期;菌体形态结构发生明显变化,表现为菌体缢缩变形,中间凹陷呈规则元宝状,细胞质固缩,质壁分离,最终细胞壁破损,内容物泄漏而使菌体死亡。【结论】苦参碱对鸡大肠杆菌抑菌机理是抑制调控细菌生长、分裂相关蛋白的合成,阻滞其分裂和生长,并且与细胞内的蛋白质结合,细胞质固缩、解体而死亡。  相似文献   

17.
Regulation of inducible and tissue-specific gene expression   总被引:370,自引:0,他引:370  
  相似文献   

18.
Template activity of RNA from antibody-producing tissues   总被引:3,自引:0,他引:3  
An RNA fraction, which represents a small percentage of cellular RNA and which has the characteristics of nuclear messenger RNA, has been isolated from the spleen and lymph nodes of immunized rats by successive phenol extractions of these tissues at increasing temperatures. This fraction increased the amount of protein synthesized in a cell-free extract of Escherichia coli as much as 35 times and directed the synthesis of proteins different from those of E. coli.  相似文献   

19.
猪cGAS基因的克隆与原核表达   总被引:1,自引:0,他引:1  
【目的】环磷酸鸟苷-腺苷酸合成酶(cyclic guanosine monophosphate-adenosine monophosphate synthase, cGAS)是近期在哺乳动物细胞中发现的一种新型核酸转移酶,能够识别胞质DNA,催化ATP和GTP生成第二信使cGAMP,继而通过STING依赖的方式活化转录因子IRF3,启动机体固有免疫。通过构建含猪cGAS基因的重组质粒pBbB3a-His6-NusA-cGAS,进行原核表达,得到cGAS蛋白,为进行体外催化合成cGAMP及探讨其在天然免疫过程中的作用奠定基础。【方法】以猪脾脏cDNA为模板克隆猪cGAS的蛋白编码区 (open reading frame, ORF),用非酶连接技术将此基因克隆至丙酸诱导型原核表达载体pBbB3a-His6-NusA-LIC中。菌液PCR进行阳性克隆鉴定并测序。将测序鉴定正确的克隆菌液提取质粒,转化至E.coli BL21 (DE3)中。当细菌生长到对数期时,丙酸钠诱导表达His6-NusA-cGAS融合蛋白,用20 mmol·L-1丙酸钠在20℃,180 r/min分别诱导0, 2, 4, 6, 8, 10 h,以确定最佳诱导时间;然后,分别用0, 5, 10, 15, 20, 25, 30, 35, 40, 45 mmol·L-1的丙酸钠在20℃,180 r/min诱导6 h,以确定最佳诱导丙酸钠诱导浓度;另外,分别在20℃,30℃,37℃条件下用20 mmol·L-1丙酸钠,180 r/min培养6 h,以确定最佳诱导温度。筛选最佳诱导条件,并用SDS-PAGE和Western blotting进行鉴定。【结果】(1)本试验成功克隆了猪cGAS基因,其ORF长度为1 494 bp;(2)构建了cGAS丙酸诱导型原核表达载体pBbB3a-His6-NusA-cGAS;(3)His6-NusA-cGAS融合蛋白在37℃,添加20 mmol·L-1丙酸钠,诱导6 h时表达量最高。(4)His6-NusA-cGAS融合蛋白在裂解菌液的上清和沉淀中均有表达,相对分子质量为111.87 kD。【结论】运用大肠杆菌表达系统成功表达了cGAS融合蛋白,本试验为体外表达cGAS融合蛋白提供技术方法。  相似文献   

20.
为了获得敏感性和特异性高的TFL1多克隆抗体,本研究构建了GST-TFL1和His-TFL1原核表达载体并转入大肠杆菌表达菌株BL21中。经IPTG诱导和蛋白纯化,成功获得了分子量约为46kD的GST-TFL1和22kD的His-TFL1融合蛋白。利用纯化的融合蛋白His-TFL1作为抗原免疫,获得了TFL1的多克隆抗体血清。抗体血清经偶联了GST-TFL1融合蛋白的纯化基质进行免疫亲和纯化获得了纯化的TFL1多克隆抗体。免疫印迹检测抗体敏感性和特异性发现,纯化后的抗体不仅能特异地识别细菌内纯化的GST-TFL1和His-TFL1融合蛋白,也能与拟南芥中TFL1蛋白发生特异性反应。该研究结果为深入研究TFL1抑制植物开花的分子机制提供了有力的工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号