首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A growth experiment was conducted to investigate effect of dietary protein to energy ratios on growth and body composition of juvenile Myxocyprinus asiaticus (initial mean weight: 10.04 ± 0.53 g, mean ± SD). Nine practical diets were formulated to contain three protein levels (340, 390 and 440 g kg?1), each with three lipid levels (60, 100 and 140 g kg?1), in order to produce a range of P/E ratios (from 22.4 to 32.8 mg protein kJ?1). Each diet was randomly assigned to triplicate groups of 20 fish in 400‐L indoors flow‐through circular fibre glass tanks provided with sand‐filtered aerated freshwater. The results showed that the growth was significantly affected by dietary P/E ratio (P < 0.05). Fish fed the diets with 440 g kg?1 protein (100 and 140 g kg?1 lipid, P/E ratio of 31.43 and 29.22 mg protein kJ?1) had the highest specific growth rates (SGR) (2.16 and 2.27% day?1, respectively). However, fish fed the diet with 390 g kg?1 protein and 140 g kg?1 lipid showed comparable growth (2.01% day?1), and had higher protein efficiency ratio (PER), protein productive value (PPV) and energy retention (ER) than other groups (P < 0.05). No significant differences in survival were found among dietary treatments. Carcass lipid content was positively correlated with dietary lipid level, but irrespective of protein level and inversely correlated with carcass moisture content. Carcass protein contents increased with increasing dietary lipid at each protein level. The white muscle and liver composition showed that lipid increased with increasing dietary lipid level (P < 0.05). Dietary protein concentrations had significant effect on condition factor (CF), hepatosomatic index (HSI) and viscerosomatic index (VSI) (P < 0.05). However, dietary lipid concentrations had no significant effect on CF, HSI (P > 0.05). Based on these observations, 440 g kg?1 protein with lipid from 100 to 140 g kg?1 (P/E ratio of 29.22 to 31.43 mg protein kJ?1) seemed to meet minimum requirement for optimal growth and feed utilization, and lipid could cause protein‐sparing effect in diets for juvenile Chinese sucker.  相似文献   

2.
A feeding trial was conducted in a recycling water system during 10 weeks to determine the optimal protein to lipid ratio in Asian red‐tailed catfish (Hemibagrus wyckioides). Six diets of two protein levels (390 and 440 g kg?1) with three lipid levels (60, 90 and 120 g kg?1) were formulated. Fish (1.96 g) were fed six diets with four replicates to apparent satiation at a stocking density of 50 fish per tank (500 L). Faeces were collected in cultured tanks at the end of the feeding trial for digestibility measurement. Significantly, improved growth performances (P < 0.01) and higher feed utilization (P < 0.001) were observed in fish fed with higher lipid diets. However, higher protein diets did not significantly improve fish growth but they reduced FCR (P < 0.001) and protein efficiency ratio (P < 0.01). Higher lipid diets also resulted in significantly increased adipose‐somatic index, carcass fat and reduced moisture of the fish. The study revealed the protein sparing effect of dietary lipid in the catfish and highest growth performance was found by fish fed 390 g kg?1 protein and 120 g kg?1 lipid diet with P/E ratio of 20.48 mg protein kJ?1. DP/DE ratio for maximal growth rate in diets was 21.48 mg protein kJ?1.  相似文献   

3.
An 8‐week feeding trial was conducted in a recycling water system at 28 ± 1 °C to investigate protein to energy ratio (P/E ratio) in African catfish Clarias gariepinus (10.9 ± 0.04 g). Six fishmeal‐based diets of two protein levels (330 and 430 g kg?1), each with three lipid levels (40, 80 and 120 g kg?1) resulted in P/E ratios ranging from 15.5 to 21.3 mg protein kJ?1 gross energy (GE) were fed to 20 fish (per 30‐L tank) in triplicate. Fish were fed 50 g kg?1 of their body weight per day adjusted fortnightly. Significantly higher (P < 0.05) growth rates and feed conversion efficiency were evident in fish fed with higher protein diet. The highest growth rate was found by fish fed 430 g kg?1 protein, 21.2 kJ?1 GE with a P/E ratio of 20.5 mg protein kJ?1 GE. Significantly indifferent (P > 0.05) values of protein utilization were found in‐between the both (higher and lower) protein diets. Higher lipid deposition (P < 0.05) in whole body and liver was observed with increasing dietary lipid level at each protein diet and as higher (P < 0.05) for the lower protein diets. Liver glycogen tended to decrease with increasing gross energy at each protein diet and higher protein diet showed comparatively lower values (P > 0.05). Digestive enzyme activities (protease and lipase) and histological examination of intestine and liver of fish fed varying P/E diets found no significant differences in response to experimental diets. The study reveals that African catfish C. gariepinus performed best the diet containing 430 g kg?1, 21.2 kJ g?1 and 20.5 mg protein kJ g?1 GE protein, gross energy and P/E ratio, respectively.  相似文献   

4.
A 10‐week feeding experiment was conducted to evaluate the effect of different protein to energy ratios on growth and body composition of juvenile Litopenaeus vannamei (initial average weight of 0.09 ± 0.002 g, mean ± SE). Twelve practical test diets were formulated to contain four protein levels (300, 340, 380 and 420 g kg?1) and three lipid levels (50, 75 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The water temperature was 28.5 ± 2 °C and the salinity was 28 ± 1 g L?1 during the experimental period. The results showed that the growth was significantly (P < 0.05) affected by dietary treatments. Shrimps fed the diets containing 300 g kg?1 protein showed the poorest growth. However, shrimp fed the 75 g kg?1 lipid diets had only slightly higher growth than that fed 50 g kg?1 lipid diets at the same dietary protein level, and even a little decline in growth with the further increase of dietary lipid to 100 g kg?1. Shrimp fed the diet with 420 g kg?1protein and 75 g kg?1 lipid had the highest specific growth rate. However, shrimp fed the diet with 340 g kg?1 protein and 75 g kg?1 lipid showed comparable growth, and had the highest protein efficiency ratio, energy retention and feed efficiency ratio among dietary treatments. Triglycerides and total cholesterol in the serum of shrimp increased with increasing dietary lipid level at the same dietary protein level. Body lipid and energy increased with increasing dietary lipid level irrespective of dietary protein. Results of the present study showed that the diet containing 340 g kg?1 protein and 75 g kg?1 lipid with digestible protein/digestible energy of 21.1 mg kJ?1 is optimum for L. vannamei, and the increase of dietary lipid level has not efficient protein‐sparing effect.  相似文献   

5.
This study was conducted to evaluate the effect on growth and feed efficiencies of the mangrove red snapper (Lutjanus argentimaculatus) when dietary fishmeal is partially replaced by defatted soybean meal (DSM). In the preliminary experiment, snapper (mean weight±SD, 58.22±5.28 g) were fed in triplicate with different dietary amounts of DSM (7.8–42.2%) that were formulated to be isonitrogenous and isocaloric. After 14 weeks, survival, growth and feed efficiencies, and hepatosomatic index (HSI) did not differ. Based on these results, a feeding trial was done using a positive control diet that contained 64% fishmeal, while the other four diets had DSM levels of 12%, 24%, 36%, and 48% that replaced fishmeal protein at 12.5%, 25%, 37.5%, and 50% respectively. All diets were formulated to have about the same protein level (50%), protein to energy ratio (P/E of 25‐mg protein kJ?1), and dietary energy (19.8 MJ kg?1). These were fed to triplicate groups of snapper (mean total weight tank?1±SD, 73.19±1.2 g) at 15 fish (average weight, 4.88 g) per 1.5‐t tank for 19 weeks. Growth (final average weight and specific growth rate (SGR), feed conversion ratio (FCR), survival, and HSI were not significantly different (P>0.05) while protein efficiency ratios or PERs were similar in treatments with DSM. Among snapper fed DSM, haematocrit value was significantly lower in fish fed 48% DSM and not different with fish fed 36% DSM. Whole‐body crude fat of snapper fed 48% DSM was lowest while the crude protein and nitrogen‐free extract (NFE) levels were highest. Histopathological analysis showed that lipid vacuoles in livers of snapper were reduced in size as dietary DSM increased. There was slight lipid deposition in the liver of snapper at 36% DSM while at 48% DSM it was excessive and hepatocytes were necrotic. There were no differences in the histology of snapper intestine. Under the experimental condition of this study, DSM can be used in snapper diets at 24% (replacing 25% of fishmeal protein) based on growth, survival and feed efficiencies, and histology of liver and intestine. For a lesser diet cost, an inclusion level higher than 24% DSM is possible with a bioavailable phosphorus supplement.  相似文献   

6.
Two growth trials were conducted to determine the effects of different dietary protein (450–550 g kg?1) and energy contents (18–22 MJ kg?1) on growth, survival and carcass thyroid hormone (T3 and T4) levels of barramundi (Lates calcarifer) larvae. Larvae fed diets containing 21 and 22 MJ kg?1 dietary energy performed consistently better than those fed diets containing 18 and 19 MJ kg?1 dietary energy in terms of final dry weight and total length, while those fed 20 MJ kg?1 had intermediate values for both the parameters. No effects of dietary protein level were discernable from the physical parameters measured; however, larvae fed diets containing the lowest protein and energy combination (450 g kg?1 protein/18 MJ kg?1 energy) had significantly lower carcass T4 levels than larvae in all other treatments, except for those fed the 500 g kg?1 protein/18 MJ kg?1 diet, which had an intermediate value. The results indicate that the optimum diet for L. calcarifer larvae from 14 to 28 days after hatch should contain 500 g kg?1 protein and a minimum of 21 MJ kg?1 dietary energy. Carcass T4 content was influenced by macronutrient inclusion level, and correlated significantly with growth, described by the total length. Reduced T4 levels may indicate a depressed larval status in this species.  相似文献   

7.
Two feeding trials were conducted to determine the minimum dietary protein level producing maximum growth, and the optimum protein to energy ratio in diets for red porgy (Pagrus pagrus) fingerlings, respectively. In the first trial, six isoenergetic diets were formulated with protein levels ranging from 400 to 650 g kg?1 in increments of 50 g kg?1, and fed for 11 weeks to 2.8 g average initial weight fish. Weight gain, specific growth rate and feed efficiency were significantly higher with diets containing higher protein levels, when compared with dietary levels below 500 g kg?1. The highest protein efficiency ratios were obtained in fish fed 500 g kg?1 dietary protein. The minimum dietary protein level producing maximum fish growth was found to be 500 g kg?1. In the second trial, 15 g average initial weight fish were fed for 12 weeks, six diets containing three different lipid levels (100, 150 and 200 g kg?1) combined with two protein levels (450 and 500 g kg?1). Weight gain values increased when dietary lipids increased from 100 to 150 g kg?1, with a further decrease for 200 g kg?1 lipids in diets; the lowest fish growth being supported by 200 g kg?1 dietary lipids. Fish growth was significantly higher when dietary protein increased from 450 to 500 g kg?1. There was no evidence of a protein‐sparing effect of dietary lipids. Liver protein and lipid contents were low when compared with other fish species. All diet assayed produced high liver glycogen accumulation. The recommended protein and lipid levels in diets for red porgy fingerlings were 500 and 150 g kg?1, respectively.  相似文献   

8.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

9.
A 8‐week feeding experiment was conducted to evaluate the effect of different dietary protein and lipid levels on growth and energy productive value of juvenile Litopenaeus vannamei, at 30 and 2 ppt, respectively. Nine practical diets were formulated to contain three protein levels (380, 410 and 440 g kg?1) and three lipid levels (60, 80 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The effects of salinity and an interaction between dietary protein level and lipid level on growth and energy productive value of shrimp were observed under the experimental conditions of this study. At 30 ppt seawater, shrimp fed with 440 g kg?1protein diets had significantly higher weight gain (WG) than those fed with 380 g kg?1 protein diets at the same dietary lipid level, and the 60 g kg?1 lipid group showed higher growth than 80 g kg?1and 100 g kg?1 lipid groups at the same dietary protein level. At 2 ppt seawater, the growth of shrimp was little affected by dietary protein treatments when shrimp fed the 80 and 100 g kg?1 lipid, shrimp fed the 80 g kg?1 lipid diets had only slightly higher growth than that fed 60and 100 g kg?1 lipid diets when fed 380 and 410 g kg?1 dietary protein diets. A significant effect of salinity on growth of shrimp was detected with the growth responses at 30 ppt > 2ppt (P < 0.05). Final body lipid content, body protein content and energy productive value of shrimp was significantly higher in animals exposed to 30 ppt than in shrimp held at 2 ppt.  相似文献   

10.
In this study, we estimated requirements for digestible protein, using intact protein sources, at one digestible energy content. Using digestibility data for silver perch (Bidyanus bidyanus Mitchell) for a large number of ingredients, we formulated a ‘summit’ diet to contain between 1.4 and 1.8 times the ‘expected requirements’ for digestible essential amino acids (based on requirements for channel catfish, Ictalurus punctatus Rafinesque). A ‘diluent’ diet was formulated to contain 0.4–0.5 times the expected requirements of digestible essential amino acids. Both ‘summit’ and ‘diluent’ diets contained similar digestible energy (14.7 MJ digestible energy kg?1 for the summit and 13.4 MJ digestible energy kg?1 for the diluent). Six diets were prepared with the following amounts of summit–diluent diets: 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100. A practical diet widely used by commercial farmers was also included as a control. Ten juvenile fish (2.1–2.6 g) were stocked into each experimental 70‐L acrylic aquarium, and each dietary treatment was randomly assigned to five replicate aquaria. Fish were fed twice daily to apparent satiation for 54 days. Final individual fish weight ranged from 4–15.5 g. Results were analysed using intersecting linear regression analysis. The optimum digestible dietary protein for diets with 13.4–14.7 MJ digestible energy kg?1, after which protein deposition did not increase significantly, was 28%. Although this study did not determine requirements for individual amino acids, for diets with the digestible energy content used here, requirements for individual amino acids obviously did not exceed the content in the 28% protein diet. These contents are useful as an estimate of ‘recommended levels’ for silver perch diets with 13.4–14.7 MJ digestible energy kg?1. The proximate composition of fish was affected by diet. Whole body protein and moisture increased, whereas lipid content decreased with increasing dietary protein content (and increasing protein–energy ratio and decreasing lipid). Fish size was also affected by diet; however, the changes in whole carcass proximate composition also occurred for fish fed diets 60:40, 80:20 and the summit diet which were a similar final weight.  相似文献   

11.
A 3 × 5 factorial design including three lipid levels (100, 130 and 180 g kg?1 diet, based on dry matter) and five dietary protein levels (370, 420, 470, 520 and 570 g kg?1 diet, based on dry matter) was conducted to investigate the optimum dietary lipid and protein requirements for Rutilus frisii kutum fingerlings. Triplicate groups of 80 kutum (500 ± 60 mg initial weight) were stocked in 250‐l tanks and fed to apparent satiation thrice daily for 8 weeks. The results showed that the growth performance and feed utilization were significantly (P < 0.05) affected by dietary protein and lipid levels. Weight gain, specific growth rate and feed conversion ratio of kutum improved significantly with increasing protein level from 370 to 470 g protein kg?1 diet, but there was a significant decrease in growth parameters with increasing protein level from 470 to 570 g protein kg?1 diet. Also, the higher values of weight gain, specific growth rate and better feed conversion ratio were observed for fish fed diets containing 130 g kg?1 lipid diet. The results of this study showed that diet containing 420 g kg?1 protein and 130 g kg?1 lipid with a P:E ratio of 19.22 mg protein kJ?1 of gross energy is optimal for kutum fingerlings.  相似文献   

12.
Improper dietary protein and energy levels and their ratio will lead to increased fish production cost. This work evaluated effects of dietary protein : energy ratio on growth and body composition of pacu, Piaractus mesopotamicus. Fingerling pacu (15.5 ± 0.4 g) were fed twice a day for 10 weeks until apparent satiation with diets containing 220, 260, 300, 340 or 380 g kg?1 crude protein (CP) and 10.9, 11.7, 12.6, 13.4 or 14.2 MJ kg?1 digestible energy (DE) in a totally randomized experimental design, 5 × 5 factorial scheme (n = 3). Weight gain, specific growth rate increased and feed conversion ratio (FCR) decreased significantly (P < 0.05) when CP increased from 220 to 271, 268 and 281 g kg?1 respectively. Pacu was able to adjust feed consumption in a wide range of dietary DE concentration. Fish fed 260 CP diets showed best (P < 0.05) protein efficiency ratio and FCR with 11.7–12.6 MJ kg?1; but for the 380 CP‐diets group, significant differences were observed only at 14.2 MJ kg?1 dietary energy level, suggesting that pacu favours protein as energy source. DE was the chief influence on whole body chemical composition. Minimum dietary protein requirement of pacu is 270 g kg?1, with an optimum CP : DE of 22.2 g MJ?1.  相似文献   

13.
A grow‐out experiment was designed to determine the effect of different dietary protein, lipid levels and protein–energy (P:E) ratio on growth performance and feed utilization of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL) culture in pond net enclosures (hapa, 3.75 m?3 each) for 12 weeks (84 days). The experimental treatments were assigned in triplicate. Six test diets were formulated to contain three different protein levels (300, 350 and 400 g kg?1 diet) and two lipid levels (100 and 140 g kg?1 diet) in a factorial manner (3 × 2) to provided six different dietary P:E ratio: 16, 17, 18, 19, 20 and 21 mg CP kJ?1 g?1). The result showed that the highest significant (P≤0.05) survival rate, growth indices and feed utilization were observed for M. rosenbergii PL fed a diet with a P:E ratio of 17 mg CP kJ?1 g1, whereas, the lowest value was recorded for prawns fed a diet with a P:E ratio of 20 mg CP kJ?1 g?1. Whole body contents of protein and lipid were highest (P≤0.05) when fed diets with 21 and 17 mg CP kJ?1 g?1 respectively. Concerning dietary protein levels, the highest (P≤0.05) values for survival and growth indices were observed for PL fed a diet containing 300 g kg?1 diet protein. The same trend was observed for PL fed a diet with 100 g kg?1 diet lipid level, irrespective of dietary protein levels. A diet containing 300 g kg?1 protein and 100 g kg?1 lipid with a dietary P:E ratio of 17 mg CP kJ g?1 is recommended to stimulate growth performance and nutrients utilization efficiency of M. rosenbergii PL.  相似文献   

14.
In this study, two growth trials were conducted to evaluate the effect of dietary protein and lipid levels on growth and feed utilization of white sea bream (Diplodus sargus) juveniles. For the first trial, five diets were formulated to contain 120 g kg?1 lipid and increasing levels of protein, ranging from 400 to 600 g kg?1. Two additional diets were formulated with 400 and 600 g kg?1 protein and 180 g kg?1 lipids. The diets were fed to apparent visual satiety to duplicate groups of fish with a mean weight of 1.5 g for 10 weeks. For the second growth trial, four diets were formulated to contain 120 g kg?1 lipid and 380–520 g kg?1 protein. Two additional diets were formulated with 380 and 520 g kg?1 protein and 180 g kg?1 lipids. The diets were fed to apparent visual satiety to triplicate groups of fish with a mean weight of 41 g for 12 weeks. At the end of both trials, there were no growth differences among groups independent of the dietary protein content. In the first trial, growth was negatively correlated to dietary lipid levels. No significant differences of feed intake were detected among groups in both trials, but a direct correlation between feed efficiency and dietary protein level was observed. Protein efficiency ratio and nitrogen (N) retention (% N intake) significantly decreased with the increase of dietary protein levels. In both trials, energy retention (% energy intake) was highest in groups fed on diets with the highest protein‐to‐energy (P/E) ratio. At the end of both trials, no significant differences in whole‐body composition were observed among groups. Specific activity of enzymes involved in amino acid catabolism [aspartate aminotransferase (AST), alanine aminotransferase (ALT) and glutamate dehydrogenase (GDH)] showed no significant differences with dietary protein level in both trials. Nevertheless, in the first trial, a significantly lower GDH activity was observed in fish fed with higher dietary lipid levels. No differences were found for specific activity of the lipogenic enzymes, fatty aid synthetase and glucose‐6‐phosphate dehydrogenase, in the second trial. Results of this study indicate that a diet with a protein level of 380–420 g kg?1 and a P/E ratio of 20 g protein MJ?1 satisfies the growth requirements of D. sargus juveniles. Also, within the range tested, no evidence of protein sparing by dietary lipids seems to occur.  相似文献   

15.
Pikeperch Sander lucioperca fingerlings were fed nine practical diets containing three levels of protein (P=34%, 43% and 50%), lipid (L=10%, 16% and 22%) and carbohydrate (C=10%, 15% and 20%) for 10 weeks in a recirculating water system at 23°C. Dietary treatments were distributed by orthogonal design with dietary energy content ranging from 15.5 to 23.1 MJ kg?1 diet. Significant differences (P<0.05) in weight gain (%) and feed efficiency (FE) were observed after feeding trial. Relatively low growth and FE were found in fish fed diets containing 34% dietary protein level compared with that of fish fed diets with 43–50% protein levels, suggesting that 34% dietary protein probably is below the protein requirements of pikeperch fingerlings. Fish fed diets containing P43L10C15, P43L22C20 and P50L16C20 had significantly (P<0.05) higher weight gain and FE than fish fed the diets containing other dietary P/L/C ratios. There was no significant difference in weight gain and FE between fish fed diets of P43L10C15, P43L22C20 and P50L16C20. These results may indicate that pikeperch require at least 43% of dietary protein for adequate growth and FE, and considering the fish growth and feed ingredient cost P43L10C15 diet is more cost‐effective formulation for pikeperch fingerling. However, protein efficiency was not significantly affected by dietary P/L/C ratio.  相似文献   

16.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

17.
An 8‐week feeding trial was conducted to assess dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile red‐spotted grouper (7.85 ± 0.03 g fish?1). Nine semi‐purified diets were formulated containing varying protein levels (440–520 g kg?1, dry matter) and lipid levels (60–120 g kg?1, dry matter). The weight gain of juvenile Epinephelus akaara was affected by dietary protein (= .005) and its interaction with dietary lipid (= .020). Viscerosomatic index, intraperitoneal fat ratio and whole‐body lipid level increased with increasing dietary lipid level (p < .001). Nitrogen retention was not affected by dietary protein and lipid, while lipid retention decreased with increasing dietary lipid level (p < .001). The plasma blood urea nitrogen increased with increasing dietary protein level (= .003). This study showed that diet with 520 g kg?1 protein and 60 g kg?1 lipid with 30.58 mg kJ?1 P:E provided a maximal growth for this species. Moreover, an increase in dietary lipid levels (from 60 to 90 g kg?1) could reduce the protein requirement (from 520 to 480 g kg?1) without affecting the growth performance, while higher fat deposition was observed in fish fed high‐lipid diets.  相似文献   

18.
Dietary protein requirement for young turbot (Scophthalmus maximus L.)   总被引:2,自引:0,他引:2  
This study was conducted to determine the optimum dietary protein level for young (an initial weight of 89 g) turbot, Scophthalmus maximus L. Duplicate groups of the fish were fed the five isoenergetic diets containing the various protein levels ranging from 290 to 570 g kg?1 diet for 45 days. Survival was not affected by dietary protein level. Weight gain and feed efficiency were improved with dietary protein level up to 490 g kg?1 diet. Dietary protein requirement of young turbot using the broken‐line model was estimated to be 494 g kg?1 diet based on weight gain response. Protein efficiency ratio was not influenced by dietary protein level. The highest protein retention was obtained from the fish fed the 490 g protein kg?1 diet. Proximate composition of the fish was not significantly affected by dietary protein level. In considering these results, it was concluded that the 494 g protein kg?1 diet with 100 g lipid kg?1 diet (15 MJ kg?1 diet) provided optimal growth of young turbot under these experimental conditions.  相似文献   

19.
Triplicate groups of pike perch (Sander lucioperca) juveniles were fed six experimental diets containing protein levels varying from 263 to 619 g kg−1 dry matter (d.m.) for 56 days. Dietary protein was supplied by graded amounts of fish meal (with 720 g kg−1 crude protein). Crude lipid and gross energy content of 101–107 g kg−1 and 19.9–20.6 MJ kg−1 remained constant between experimental diets. Pike perch with an initial body weight of 1.05 ± 0.05 g were randomly distributed in 18 tanks of two similar recirculation systems and fed on gradually decreasing feeding rates of 10 to 6% of their body weight per day. Growth performance and feed conversion increased with dietary protein level from 263 to 549 g kg−1 d.m. but did not decline at highest dietary protein level. Protein efficiency ratio declined linearly with increasing dietary protein. Survival ranged between 89.7 and 93.9% and was not affected by dietary composition. Dry matter and crude lipid content of pike perch fingerlings decreased with increasing dietary protein supply and significantly the lowest dry matter and crude lipid levels were observed in fish fed diets containing 619 g kg−1 of crude protein. The dietary protein requirement for pike perch fingerlings calculated by broken‐line and second‐order polynomial regression ranged between 529 and 577 g kg−1, respectively.  相似文献   

20.
Effects of varying dietary digestible protein (DP) and digestible energy (DE) on protein retention efficiency (PRE), weight gain, protein deposition and carcass composition for silver perch (Bidyanus bidyanus, Mitchell) were studied. Using digestibility data for silver perch, we formulated three series of diets with different DE contents (13, 15 or 17 MJ DE kg?1). For each series, a ‘summit’ diet containing an excess of protein for silver perch (based on previous research) and a ‘diluent’ diet with only 10–13% DP were formulated. By blending the summit and diluent diets together in different ratios, five diets with different DP contents were produced for each DE series. A commercial diet was also included to give 16 experimental diets in total. Eight juvenile fish (mean initial weight 1.2 g) were stocked into each of 64 × 70‐L acrylic aquaria and then each of the 16 diets was randomly allocated to four replicate aquaria. Tanks were supplied with partially recirculated water (75%) at 25–27°C. Fish were fed restrictively, twice per day, based initially on 3.5% body weight day?1 with 40% of the ration given at 08:30 hours and 60% given at 15:00 hours for 59 days. Quadratic functions were fitted to each energy series to describe the relationship between DP content of diets and PRE (the asymptote of these functions were used to predict maximum PRE). For low DE (13 MJ kg?1), mid‐DE (15 MJ kg?1) and high DE (17 MJ kg?1), the dietary DP contents to give maximum PRE were 24.7%, 26.1% and 30.1% respectively. Carcass fat decreased with increasing DP and increasing DP:DE ratio. Varying the dietary protein and DE also influenced other indices of fish performance. ‘Optimum’ dietary protein therefore depends on several factors. For fish fed, restrictively, the protein content needed to maximize PRE is lower than the content needed to maximize weight gain or minimize carcass fat. For fish fed to satiation, the lowest protein content for maximum weight gain is lower than for fish fed restrictively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号