首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper an overview of principles involved in radiographic imaging by tomography, magnification radiography, xeroradiography, and computed tomography is presented. Tomography is a method to selectively blur distracting superimposed shadows while maintaining relative image sharpness in a plane of concern. Magnification radiography is a method to directly enlarge the radiographic image by increasing object-film distance and utilizing a small focal spot. Xeroradiography is an electrostatic imaging process that provides wide latitude and good resolution through enhanced contrast in tissues with poor inherent contrast. Computed tomography involves imaging by computer analysis of x-ray absorption utilizing rotational x-ray projections.  相似文献   

2.
Detection and accurate classification of traumatic tarsal fractures are important for identifying cases requiring surgical intervention. The aim of this prospective, experimental, methods comparison study was to directly compare the accuracy, sensitivity, and specificity of tarsal computed tomography (CT), ten‐view and two‐view digital radiographs for detecting traumatic fractures of the canine tarsus. The working hypothesis was that tarsal fractures would be detected with higher accuracy, sensitivity, and specificity using CT imaging compared to radiography, and a ten‐view would be superior to a two‐view radiographic study. Ten cadaver hind limbs of medium to large dogs received a CT scan and ten‐view radiographic study before and after induction of fractures with a hydraulic press. All bones included in the radiographic images were assessed for fractures by two observers and gross dissection was used as the gold standard. The two‐view radiographic study (dorsoplantar, lateromedial) was created from the ten‐view study and reviewed 2 years later. All limbs sustained fractures, the most common locations were the talus and calcaneus (n = 7). The sensitivity of CT was greater than ten‐view radiographic study (77% vs. 57%), while the specificity was similar (97% vs. 98%). The sensitivity and specificity of the ten‐view and two‐view radiograph studies were similar (57% vs. 55%; both 98%). Computed tomography images were reassessed postdissection to determine if failure to identify fractures resulted from observer error. Overall, CT was better than radiography for detecting fractures of the canine tarsus, however there was little improvement with ten‐view compared to two‐view radiographic studies.  相似文献   

3.
Survey radiography, linear tomography, and computed tomography were used to image cribriform plate lesions that were created experimentally using intramedullary pins in 18 dog cadaver skulls. Computed and linear tomographic images were taken along the dorsal imaging plane. Studies were independently reviewed by five observers. Results were combined so that the relative sensitivity, specificity, and accuracy of each imaging technique could be compared using chi-square analysis. Computed tomography proved to be significantly more sensitive and accurate (p<0.05) than either linear tomography or survey radiography. Computed tomographic images were consistently of good to excellent quality for imaging the cribriform plate. It was concluded that computed tomography of the skull using a dorsal imaging plane was the best available imaging modality for detecting 3-mm and 5-mm experimentally created cribriform plate defects.  相似文献   

4.
Radiographic diagnosis of equine bone disease using digital radiography is prevalent in veterinary practice. However, the diagnostic quality of digital vs. conventional radiography has not been compared systematically. We hypothesized that digital radiography would be superior to film-screen radiography for detection of subtle lesions of the equine third metacarpal bone. Twenty-four third metacarpal bones were collected from horses euthanized for reasons other than orthopedic disease. Bones were dissected free of soft tissue and computed tomography was performed to ensure that no osseous abnormalities were present. Subtle osseous lesions were produced in the dorsal cortex of the third metacarpal bones, and the bones were radiographed in a soft tissue phantom using indirect digital and conventional radiography at standard exposures. Digital radiographs were printed onto film. Three Diplomates of the American College of Veterinary Radiology evaluated the radiographs for the presence or absence of a lesion. Receiver operator characteristic curves were constructed, and the area under these curves were compared to assess the ability of the digital and film-screen radiographic systems to detect lesions. The area under the ROC curves for film-screen and digital radiography were 0.87 and 0.90, respectively ( P =0.59). We concluded that the digital radiographic system was comparable to the film-screen system for detection of subtle lesions of the equine third metacarpal bone.  相似文献   

5.
A conventional high‐resolution screen–film system was compared with a digital detector system. A total of 20 birds (14 pigeons and six psittacine birds) with an average body mass of 533 g were examined in dorsoventral as well as lateral projections. Digital radiographs were acquired with the same mAs as well as half the mAs used for the conventional radiographs. Three criteria and one overall assessment were defined for each of four anatomic regions and assessed by five veterinarians using a score system. Comparison of the ratings was done by visual grading analysis. For the majority of criteria, there was no significant difference regarding image quality between the digital and screen–film projections. However, for certain criteria the quality of the digital images was significantly superior. Using the same mAs as for the conventional radiographs, the humeral joint surfaces and the honeycomb structure of the lung were assessed as superior with the digital imaging system. The tracheal rings and the delineation of the trachea from the surrounding tissue were also superior with the digital system. Assessment of the trabecular structure of the humerus was superior when the full mAs was used compared with the reduced mAs. In conclusion the digital technique is equal or superior to the conventional screen–film high‐resolution system for pet birds of a medium size. With some limitations, a dose reduction is possible with the digital system.  相似文献   

6.
Reasons for performing study: There are no data concerning the accuracy of conventional and computed or digital radiography for evaluation of the equine foot. Objectives: To compare conventional film‐screen and computed radiography with magnetic resonance imaging (MRI) for detection of distal border fragments of the navicular bone; and to establish which type of fragment was more likely to be detected radiologically. Methods: Horses were included if forelimb lameness was localised to the foot and both radiography and high‐field MR images had been acquired. Horses were divided into 2 groups based on acquisition of conventional (Group A) or computed (Group B) radiographs. The presence of distal border fragments was recorded. From MR images, distal border fragments were graded based on their size and changes in signal intensity in the adjacent navicular bone. Sensitivity and specificity of conventional and computed radiography for detection of fragments were calculated using MRI as the gold standard. A Chi‐squared test was used to test for associations between specific radiological and MRI findings in the distal border of the navicular bone. Results: In Group A 46 and 18 fragments were identified on MR and radiographic images, respectively; in Group B 45 and 17 fragments were seen. There was no significant difference between computed and conventional radiography. Grades 4 and 5 fragments or large‐sized fragments were identified most frequently; low‐grade fragments were unlikely to be observed. There was a significant correlation between radiological and MRI abnormalities of the distal border of the navicular bone. Conclusions: Conventional and computed radiography had similar, rather low sensitivity for identification of distal border fragments of the navicular bone, but specificity was high. Large‐sized and high‐grade fragments were most likely to be identified radiologically. Potential relevance: Fragments observed radiologically are likely to be associated with other pathological abnormalities of the distal border of the navicular bone.  相似文献   

7.
Understanding radiographic anatomy and the effects of varying patient and radiographic tube positioning on image quality can be a challenge for students. The purposes of this study were to develop and validate a novel technique for creating simulated radiographs using computed tomography (CT) datasets. A DICOM viewer (ORS Visual) plug‐in was developed with the ability to move and deform cuboidal volumetric CT datasets, and to produce images simulating the effects of tube‐patient‐detector distance and angulation. Computed tomographic datasets were acquired from two dogs, one cat, and one horse. Simulated radiographs of different body parts (n = 9) were produced using different angles to mimic conventional projections, before actual digital radiographs were obtained using the same projections. These studies (n = 18) were then submitted to 10 board‐certified radiologists who were asked to score visualization of anatomical landmarks, depiction of patient positioning, realism of distortion/magnification, and image quality. No significant differences between simulated and actual radiographs were found for anatomic structure visualization and patient positioning in the majority of body parts. For the assessment of radiographic realism, no significant differences were found between simulated and digital radiographs for canine pelvis, equine tarsus, and feline abdomen body parts. Overall, image quality and contrast resolution of simulated radiographs were considered satisfactory. Findings from the current study indicated that radiographs simulated using this new technique are comparable to actual digital radiographs. Further studies are needed to apply this technique in developing interactive tools for teaching radiographic anatomy and the effects of varying patient and tube positioning.  相似文献   

8.
William R.  Widmer  DVM  MS  Kenneth A.  Buckwalter  MD  MS  John F.  Fessler  DVM  MS  Michael A.  Hill  B Vet  Med  MS  PhD  MRCVS  David C.  Vansickle  DVM  PhD  Susan  Ivancevich  MD 《Veterinary radiology & ultrasound》2000,41(2):108-116
Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.  相似文献   

9.
Reasons for performing study: Distal border synovial invaginations of the distal sesamoid bone are radiographically assessed during the selection process of horses admitted as breeding stallions or in purchase examinations. Nowadays, many moderately or some deeply penetrating proximally enlarged synovial invaginations are considered as moderate or severe radiographic findings. Objective: To measure the difference between and agreement of the morphology of distal border synovial invaginations on radiography vs. computed tomography (CT). It was hypothesised that the morphology of distal border synovial invaginations would be better evaluable on CT compared with radiography. Methods: Computed tomography scans and 3 dorsoproximal–palmarodistal oblique (DPr‐PaDiO) radiographs were obtained on 50 cadaver forefeet from 25 Warmblood horses. Computed tomography was assumed to be the gold standard. The number, shape and depth of penetration of distal border synovial invaginations into the distal sesamoid bone were evaluated with both methods, and the comparison of their measurements was statistically described. Results: A statistically significant mean difference for number of distal synovial invaginations between CT and all 3 DPr‐PaDiO projections was found and was approximately equal to 2, meaning that CT permits visualisation of an average of 2 more invaginations than radiography. In none of the cases did radiography have a higher number observed than CT. A large variation in the difference of measurements for depth of penetration against their mean difference between CT and the 3 radiographic projections was seen. Radiography underestimated the depth of invaginations, and more so when these were deeper. There was no statistically significant mean difference found between the techniques for depth. A moderate to good agreement between measurements on CT and the three DPr‐PaDiO projections for shape was seen, in which the D55°Pr‐PaDiO projection showed the best agreement. A high specificity (90–99%) and low sensitivity (65%) for all projections for shape were found. Conclusions and potential relevance: Radiography differs considerably from CT concerning the morphology of distal navicular border synovial invaginations. For the evaluation of the number, depth and shape of distal synovial invaginations in the distal sesamoid bone, radiography shows only partially the morphology seen on CT.  相似文献   

10.
Objective – To describe the different forms of digital radiography (DR), image file formats, supporting equipment and services required for DR, storage of digital images, and teleradiology. Background – Purchasing a DR system is a major investment for a veterinary practice. Types of DR systems include computed radiography, charge coupled devices, and direct or indirect DR. Comparison of workflow for analog and DR is presented. Summary – On the surface, switching to DR involves the purchase of DR acquisition hardware. The X‐ray machine, table and grids used in analog radiography are the same for DR. Realistically, a considerable infrastructure supports the image acquisition hardware. This infrastructure includes monitors, computer workstations, a robust computer network and internet connection, a plan for storage and back up of images, and service contracts. Advantages of DR compared with analog radiography include improved image quality (when used properly), ease of use (more forgiving to the errors of radiographic technique), speed of making a complete study (important for critically ill patients), fewer repeat radiographs, less time looking for imaging studies, less physical storage space, and the ability to easily send images for consultation. Conclusions – With an understanding of the infrastructure requirements, capabilities and limitations of DR, an informed veterinary practice should be better able to make a sound decision about transitioning to DR.  相似文献   

11.
In this study the quality of digital and analog radiography in dogs was compared. For this purpose, three conventional radiographs (varying in exposure) and three digital radiographs (varying in MUSI-contrast [MUSI = MUlti Scale Image Contrast], the main post-processing parameter) of six different body regions of the dog were evaluated (thorax, abdomen, skull, femur, hip joints, elbow). The quality of the radiographs was evaluated by eight veterinary specialists familiar with radiographic images using a questionnaire based on details of each body region significant in obtaining a radiographic diagnosis. In the first part of the study the overall quality of the radiographs was evaluated. Within one region, 89.5% (43/48) chose a digital radiograph as the best image. Divided into analog and digital groups, the digital image with the highest MUSI-contrast was most often considered the best, while the analog image considered the best varied between the one with the medium and the one with the longest exposure time. In the second part of the study, each image was rated for the visibility of specific, diagnostically important details. After summarisation of the scores for each criterion, divided into analog and digital imaging, the digital images were rated considerably superior to conventional images. The results of image comparison revealed that digital radiographs showed better image detail than radiographs taken with the analog technique in all six areas of the body.  相似文献   

12.
ACQUISITION HARDWARE FOR DIGITAL IMAGING   总被引:2,自引:2,他引:0  
Use of digital radiography is growing rapidly in veterinary medicine. Two basic digital imaging systems are available, computed radiography (CR) and direct digital radiography (DDR). Computed radiographic detectors use a two-step process for image capture and processing. Image capture is by X-ray sensitive phosphors in the image plate. The image plate reader transforms the latent phosphor image to light photons that are converted to an analog electrical signal. An analog to digital converter is used to digitize the electrical signal before computer analysis. Direct digital detectors provide digital data by direct readout after image capture—a reader unnecessary. Types of DDR detectors are flat panel detectors and charge coupled device (CCD) detectors. Flat panel detectors are composed of layers of semiconductors for image capture with transistor and microscopic circuitry embedded in a pixel array. Direct converting flat panel detectors convert incident X-rays directly into electrical charges. Indirect detectors convert X-rays to visible light, then to electrical charges. All flat panel detectors send a digitized electrical signal to a computer using a direct link. Charge coupled device detectors have a small chip similar to those used in digital cameras. A scintillator first converts X-rays to a light signal that is minified by an optical system before reaching the chip. The chip sends a digital signal directly to a computer. Both CR and DDR provide quality diagnostic images. CR is a mature technology while DDR is an emerging technology.  相似文献   

13.
Use of digital radiography is growing rapidly in veterinary medicine. Two basic digital imaging systems are available, computed radiography (CR) and direct digital radiography (DDR). Computed radiographic detectors use a two‐step process for image capture and processing. Image capture is by X‐ray sensitive phosphors in the image plate. The image plate reader transforms the latent phosphor image to light photons that are converted to an analog electrical signal. An analog to digital converter is used to digitize the electrical signal before computer analysis. Direct digital detectors provide digital data by direct readout after image capture—a reader unnecessary. Types of DDR detectors are flat panel detectors and charge coupled device (CCD) detectors. Flat panel detectors are composed of layers of semiconductors for image capture with transistor and microscopic circuitry embedded in a pixel array. Direct converting flat panel detectors convert incident X‐rays directly into electrical charges. Indirect detectors convert X‐rays to visible light, then to electrical charges. All flat panel detectors send a digitized electrical signal to a computer using a direct link. Charge coupled device detectors have a small chip similar to those used in digital cameras. A scintillator first converts X‐rays to a light signal that is minified by an optical system before reaching the chip. The chip sends a digital signal directly to a computer. Both CR and DDR provide quality diagnostic images. CR is a mature technology while DDR is an emerging technology.  相似文献   

14.
Nontraumatic spontaneous pneumoperitoneum suggests the presence of gastrointestinal perforation; early detection can be lifesaving. Horizontal beam projections have been reported to be more sensitive than standard radiographic views for detecting small volumes of free peritoneal gas. This prospective, experimental, analytical study compared both left lateral (LL) and ventrodorsal (VD) standard views to horizontal beam projections for detecting small volumes of artificially induced pneumoperitoneum in live dogs. The effect of radiology training on accurate detection of small amounts of free peritoneal air was also assessed. Fourteen dogs had four radiographic projections taken after injection of 0, 2.5, 5, and 10 mL of cumulative air into their abdominal cavities. Radiographs were interpreted individually by three American College of Veterinary Radiology‐certified radiologists and three small animal internship‐trained veterinarians who were blinded to the air volume injected. At 2.5 and 10 mL of air injected, the LL projection had highest odds of an accurate response (odds ratio [OR] = 2.4 and 99.0 when compared to VD horizontal and VD projections, respectively). At 5 mL of air injected, the lateral horizontal (LH) projection had the highest odds of an accurate response (OR = 3.2 compared to VD horizontal). The LL projection was not significantly different from the LH projection at all volumes of air injected. Board certification led to higher odds of accurate responses at volumes of 5 (OR = 2.2) and 10 mL (OR = 3.6), as compared to nonspecialist veterinarians. Overall, LH and standard LL appeared to be the most useful radiographic projections for detection of small amounts of free peritoneal gas.  相似文献   

15.
The ability of computed tomography and radiography to detect changes associated with nasal neoplasia was compared in dogs. Eighteen areas or anatomic structures were evaluated in 21 dogs for changes indicative of neoplasia. Computed tomography was superior (P < or = 0.05) to radiography for detecting changes in 14 of 18 areas. Radiography was not superior for detecting changes in any structure or area. Computed tomography reveals vital information not always detected radiographically to assist in providing a prognosis and in planning treatment for nasal neoplasms in dogs.  相似文献   

16.
Computed tomography (CT) uses x‐ray beams and reconstructive computer technology to create tomographic slices (sections) of the area being imaged. Computed tomography has higher contrast resolution than conventional radiography allowing for more accurate differentiation of soft tissues and fluids. This form of 3D imaging removes problems caused by superimposition of multiple anatomical structures, which is a major impediment when viewing radiographs of the equine head. Once the images are acquired, multi‐planar and 3D reconstructions can be performed to view different teeth or associated structures in an optimal way. Anatomical and pathological changes in the dental tissues, periodontal tissues, alveolar bone and adjacent sinuses can then be assessed. Scintigraphy with 99m technetium methyl‐diphosphate (methylene‐diphosphonate) can detect changes in bone that precede radiographic changes, and this makes it a very useful imaging modality for diagnosis of early periapical infection of the equine cheek teeth. Additionally, it is invaluable for imaging suspected infections of supernumerary or dysplastic teeth where the results of radiography or even CT may be equivocal. Periapical infections of the cheek teeth typically result in focal and intense increased radionuclide uptake located over the apical region of the affected tooth.  相似文献   

17.
This report describes the imaging features of radiography, computed tomography and virtual bronchoscopy in dogs and cats with lung lobe torsions. The medical records, thoracic radiographs and computed tomography images of four dogs and two cats with confirmed lung lobe torsions were retrospectively reviewed. Computed tomography with virtual bronchoscopy showed bronchial narrowing, collapse or occlusion in all six animals, while this was only appreciated on one radiographic examination. A tapering terminating angle of the air-filled bronchus proximal or distal to the collapsed region was seen only on computed tomography and virtual bronchoscopy in all six animals. The vesicular emphysema pattern typical of lung lobe torsion was seen on three computed tomographies but only on one radiographic examination. The lung lobe torsion-specific findings of vesicular emphysema and a proximally narrowed or occluded bronchus were more easily recognised on computed tomography and virtual bronchoscopy than with radiographs. Computed tomography slices acquired through the bronchus and lung lobe of interest in a cat or dog with possible lung lobe torsion can be reformatted into virtual bronchoscopic images that can be utilised along with computed tomography to help make a more definitive preoperative diagnosis.  相似文献   

18.
Diagnostic imaging techniques (conventional radiography, computed tomography and magnetic resonance imaging) are an essential tool in the diagnostic work-up of ear diseases. Conventional radiography is commonly used, but often lacks sensitivity. Computed tomography (CT) and magnetic resonance (MR) are complementary imaging studies of the middle ear, labyrinth, internal auditory canal and their contents. CT provides excellent images of bony structures and is indicated where osseous changes are of greatest diagnostic importance. MR is superior in imaging soft tissue components including intralabyrinthine fluid. Therefore, more than one of these imaging techniques may be required in order to make a diagnosis.  相似文献   

19.
OBJECTIVE: To compare results of computed tomography (CT) and radiography with histopathologic findings in tracheobronchial lymph nodes (TBLNs) in dogs with primary lung tumors. DESIGN: Retrospective case series. ANIMALS: 14 client-owned dogs. PROCEDURES: Criteria for inclusion were diagnosis of primary lung tumor, use of thoracic radiography and CT, and histologic confirmation of TBLN status. Medical records were reviewed for signalment; history; and physical examination, clinicopathologic, radiographic, CT, surgical, and histopathologic findings. RESULTS: Tracheobronchial lymphadenopathy was not identified via radiography in any dogs. Tracheobronchial lymphadenopathy was diagnosed in 5 dogs via CT. Six dogs had histologic confirmation of metastasis to TBLNs. Radiographic diagnosis yielded 6 false-negative and no false-positive results for tracheobronchial lymphadenopathy. Computed tomography yielded 1 false-negative and no false-positive results. Sensitivity of CT for correctly assessing TBLN status was 83%, and specificity was 100%. Positive predictive value was 100%, and negative predictive value was 89%. Dogs with lymphadenopathy via CT, histologic confirmation of TBLN metastasis, or primary tumors with a histologic grade > 1 had significantly shorter survival times than their counterparts. CONCLUSIONS AND CLINICAL RELEVANCE: Results of CT evaluation of TBLN status were in agreement with histopathologic findings and more accurate than use of thoracic radiography for evaluating TBLNs in dogs with primary lung tumors. Computed tomography imaging should be considered as part of the staging process to more accurately assess the TBLNs in dogs with primary lung tumors.  相似文献   

20.
Computed tomography (CT) has become more widely available and computed radiography (CR) has replaced film-screen radiography for canine thoracic imaging in many veterinary practices. There are limited data comparing these modalities in a veterinary clinical setting to detect pulmonary nodules. We compared CT, CR, and film-screen radiography for detecting the presence, number, and characteristics of pulmonary nodules in dogs. Observer performance for a variety of experience levels was also evaluated. Twenty-one client-owned dogs with a primary neoplastic process underwent CT and CR; nine also received film-screen radiographs. Positive/negative classification by consensus agreed between the three modalities in 8/9 dogs and between CR and CT in the remaining 12. CT detected the greatest (P = 0.002) total number of nodules and no difference was seen between CR and films. The greatest number of nodules was seen in the right middle and both caudal regions, but only using CT (P < 0.0001). Significantly smaller nodules were detected with CT (P = 0.0007) and no difference in minimum size was detected between CR and films. Observer accuracy was high for all modalities; particularly for CT (90.5-100%) and for the senior radiologist (90.5-100%). CT was also characterized by the least interobserver variability. Although CT, CR, and film-screen performed similarly in determining the presence or absence of pulmonary nodules, a greater number of smaller nodules was detected with CT, and CT was associated with greater diagnostic confidence and observer accuracy and agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号