首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin E was determined by the high-performance liquid chromatography (HPLC) method. All the plants tested showed differences in their alpha-tocopherol content and the differences were significant (p < 0.05). The highest alpha-tocopherol content was in Sauropus androgynus leaves (426.8 mg/kg edible portion), followed by Citrus hystrix leaves (398.3 mg/kg), Calamus scipronum (193.8 mg/kg), starfruit leaves Averrhoa belimbi (168.3 mg/kg), red pepper Capsicum annum (155.4 mg/kg), local celery Apium graveolens (136.4 mg/kg), sweet potato shoots Ipomoea batatas (130.1 mg/kg), Pandanus odorus (131.5 mg/kg), Oenanthe javanica (146.8 mg/kg), black tea Camelia chinensis (183.3 mg/kg),papaya Carica papaya shoots (111.3 mg/kg), wolfberry leaves Lycium chinense (94.4 mg/kg), bird chili Capsicum frutescens leaves (95.4 mg/kg), drumstick Moringa oleifera leaves (90.0 mg/kg), green chili Capsicum annum (87 mg/kg), Allium fistulosum leaves (74.6 mg/kg), and bell pepper Capsicum annum (71.0 mg/kg). alpha-Tocopherol was not detected in Brassica oleracea, Phaeomeria speciosa, Pachyrrhizus speciosa, Pleurotus sajor-caju, and Solanum melongena.  相似文献   

2.
A screening method using LC-DAD-ESI/MS was applied to the analysis of flavonoids in celery, Chinese celery, and celery seeds (Apium graveolens L. and varieties). Fifteen flavonoid glycosides were detected in the three celery materials. They were identified as luteolin 7-O-apiosylglucoside, luteolin 7-O-glucoside, apigenin 7-O-apiosylglucoside, chrysoeriol 7-O-apiosylglucoside, chrysoeriol 7-O-glucoside, and more than 10 malonyl derivatives of these glycosides. The identification of the malonyl derivatives was confirmed by their conversion into glycosides upon heating and by comparison of some of the malonates with malonates that had previously been identified in red bell pepper and parsley. The concentrations of the glycosides and the malonyl glycosides in the three materials were estimated by comparison to aglycone standards. This is the first report of the presence of these glycosylated flavonoid malonates in celery.  相似文献   

3.
Effects of domestic processing and storage on the flavonols quercetin, myricetin, and kaempferol in five berries were studied using an optimized RP-HPLC method with UV and diode array detection after an acid hydrolysis of the corresponding glycosides. In fresh berries, the total content of flavonols was highest in lingonberry (169 mg/kg) and black currant (157 mg/kg), intermediate in bilberry (41 mg/kg) and strawberry (17 mg/kg), and lowest in red raspberry (9.5 mg/kg). Cooking strawberries with sugar to make jam resulted in minor losses (quercetin 15%, kaempferol 18%). During cooking of bilberries with water and sugar to make soup, 40% of quercetin was lost. Traditional preservation of crushed lingonberries in their own juice caused a considerable (40%) loss of quercetin. Only 15% of quercetin and 30% of myricetin present in unprocessed berries were retained in juices made by common domestic methods (steam-extracted black currant juice, unpasteurized lingonberry juice). Cold-pressing was superior to steam-extraction in extracting flavonols from black currants. During 9 months of storage at 20 C, quercetin content decreased markedly (40%) in bilberries and lingonberries, but not in black currants or red raspberries. Myricetin and kaempferol were more susceptible than quercetin to losses during storage.  相似文献   

4.
The objective of this work was to quantify the flavonoids present in foods most commonly consumed by the Brazilian population. The predominant flavonoids found in largest abundance in all of the analyzed vegetables were glycosides of quercetin. In lettuce, a small amount of luteolin was also detected. In sweet pepper, quercetin and luteolin were both present. White onion [48-56 mg/100 g of fresh weight (FW), expressed as aglycon], red onion (40-100 mg/100 g of FW), red lettuce (67-67.2 mg/100 g of FW), arugula (41-118 mg/100 g of FW), and chicory (18-38 mg/100 g of FW) were highest in total flavonoids. In fruits, the highest concentrations of flavonoids were found in the peel (125-170 mg/100 g of FW) and pulp (35-44 mg/100 g of FW) of oranges and in some apple varieties (14-36 mg/100 g of FW). Variability in flavonoid content due to time of harvesting was high for leafy vegetables and red onions. The estimated ingestion by Brazilian population ranged from 60 to 106 mg/day.  相似文献   

5.
The amounts of quercetin, myricetin, and kaempferol aglycons in 25 edible berries were analyzed by an optimized RP-HPLC method with UV detection and identified with diode array and electrospray ionization mass spectrometry detection. Sixteen species of cultivated berries and nine species of wild berries were collected in Finland in 1997. Quercetin was found in all berries, the contents being highest in bog whortleberry (158 mg/kg, fresh weight), lingonberry (74 and 146 mg/kg), cranberry (83 and 121 mg/kg), chokeberry (89 mg/kg), sweet rowan (85 mg/kg), rowanberry (63 mg/kg), sea buckthorn berry (62 mg/kg), and crowberry (53 and 56 mg/kg). Amounts between 14 and 142 mg/kg of myricetin were detected in cranberry, black currant, crowberry, bog whortleberry, blueberries, and bilberry. Kaempferol was detected only in gooseberries (16 and 19 mg/kg) and strawberries (5 and 8 mg/kg). Total contents of these flavonols (100-263 mg/kg) in cranberry, bog whortleberry, lingonberry, black currant, and crowberry were higher than those in the commonly consumed fruits or vegetables, except for onion, kale, and broccoli.  相似文献   

6.
European Eucalyptus honeys showed a common and characteristic HPLC profile in which the flavonoids myricetin (3,5,7,3',4', 5'-hexahydroxyflavone), tricetin (5,7,3',4',5'-pentahydroxyflavone), quercetin (3,5,7,3',4'-pentahydroxyflavone), luteolin (5,7,3', 4'-tetrahydroxyflavone), and kaempferol (3,5,7, 4'-tetrahydroxyflavone) were identified. Their contents, and relative amounts, in the analyzed honey samples were quite constant and supported their floral origin. In addition, ellagic acid and the propolis-derived flavonoids pinobanksin, pinocembrin, and chrysin were detected in most samples. The contents of these nonfloral phenolics were much more variable as could be expected for their propolis origin. Myricetin, tricetin, and luteolin had not been identified as floral markers in any other honey sample previously analyzed in our laboratory (chestnut, citrus, rosemary, lavender, acacia, rapeseed, sunflower, heather, lime tree, etc.) or reported in the literature, suggesting that these could be useful markers. Only in some individual heather samples produced in Portugal has tricetin previously been detected in minor amounts. These samples, however, were contaminated with Eucalyptus as revealed by their pollen analysis and the lack of tricetin or their glycosides in heather floral nectar. It remains to be established if myricetin, tricetin, and luteolin originate from Eucalyptus floral nectar where the corresponding glycosides should be present.  相似文献   

7.
The antiradical activities of some flavonols (kaempferol, quercetin, robinetin, quercetagetin, and myricetin), flavones (apigenin, baicalein, and luteolin), flavanones (naringenin and dihydroquercetin), and flavanols [(+)-catechin and (-)-epicatechin] were determined by measuring the reaction kinetics with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and alpha,gamma-bisdiphenylene-beta-phenylallyl (BDPA) radicals. The reactions, which follow the mixed second-order rate law, were investigated under pseudo-first-order conditions by use of a large excess of flavonoids, and their stoichiometry was determined by spectrophotometric titration. The results confirm stoichiometric factors of 1, 2, and 3 for flavonoids with one, two, and three hydroxyl groups in the B-ring, respectively, excluding kaempferol, which, despite a single OH group in the B-ring, has a factor of 2, which is explained by the 3-OH group supporting the reaction with free radicals. Structure-activity considerations indicate for the present series of flavonoids the importance of multiple OH substitutions and conjugation. The logarithms of reaction rate constants with the OH, DPPH, and BDPA radicals correlate well with the reduction potential of the flavonoids.  相似文献   

8.
The flavonoids present in passion fruit (Passiflora edulis) leaves were identified by a high-performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS/MS) method. Sixteen apigenin or luteolin derivatives were characterized, which included four mono-C-glycosyl, eight O-glycosyl- C-glycosyl, and four O-glycosyl derivatives. With the exceptions of C-hexosyl luteolin and C-hexosyl apigenin, all the compounds exhibited a deoxyhexose moiety. Moreover, the uncommon C-deoxyhexosyl derivatives of luteolin and apigenin have been identified for first time in P. edulis by HPLC-DAD-MS/MS. The antioxidative capacity of passion fruit leaves was checked against DPPH radical and several reactive oxygen species (superoxide radical, hydroxyl radical, and hypochlorous acid), revealing it to be concentration-dependent, although a pro-oxidant effect was noticed for hydroxyl radical.  相似文献   

9.
Vidalia onion varieties Nirvana, DPS 1032, Yellow 2025, King-Midas, and SBO 133 grown at Vidalia, Georgia, were analyzed for flavonoid content. A high-performance liquid chromatographic (HPLC) method with photodiode array detection was used for quantification. Compounds were analyzed as aglycons after acid hydrolysis with 1.2 M HCl. Identification of each compound was based on comparison of its retention time and UV spectra with those of pure commercial standards. Three major flavonoids, kaempferol, myricetin, and quercetin, were identified and quantified. Quercetin was the major flavonoid (7.70-46.32 mg/100 g fresh weight, FW) present in all varieties, followed by myricetin (2.77-4.13 mg/100 g FW). Minor quantities of kaempferol (1.10-1.98 mg/100 g FW) were also detected. The total polyphenols and Trolox equivalent antioxidant capacity (TEAC) ranged from 73.33 to 180.84 mg/100 g FW and 0.92-1.56 microM TEAC/g FW, respectively. A positive but weaker correlation was obtained for total polyphenols versus antioxidant capacity. Nevertheless, a stronger correlation (r(2) = 0.34) was obtained between flavonoid content versus antioxidant capacity. The data indicate that Vidalia onions are a rich source of quercetin, and they also contain myricetin and kaempferol.  相似文献   

10.
Flavonoids of nine Australian monofloral Eucalyptus honeys have been analyzed and related to their botanical origins. The mean content of total flavonoids varied from 1.90 mg/100 g of honey for stringybark (E. globoidia) honey to 8.15 mg/100 g of honey for narrow-leaved ironbark (E. crebra) honey, suggesting that species-specific differences occur quantitatively among these Eucalyptus honeys. All of the honey samples analyzed in this study have a common flavonoid profile comprising tricetin (5,7,3',4',5'-pentahydroxyflavone), quercetin (3,5,7,3',4'-pentahydroxyflavone), and luteolin (5,7,3',4'-tetrahydroxyflavone), which, together with myricetin (3,5,7,3',4',5'-hexahydroxyflavone) and kaempferol (3,5,7,4'-tetrahydroxyflavone), were previously suggested as floral markers for European Eucalyptus honeys. Thus, flavonoid analysis could be used as an objective method for the authentication of the botanical origin of Eucalyptus honeys. Moreover, species-specific differences can also be found in the composition of honey flavonoid profiles. Among these honeys, bloodwood (E. intermedia) honey contains myricetin and tricetin as the main flavonoid compounds, whereas there is no myricetin detected in yapunyah (E. ochrophloia), narrow-leaved ironbark (E. crebra), and black box (E. largiflorens) honeys. Instead, these types of Eucalyptus honeys may contain tricetin, quercetin, and/or luteolin as their main flavonoid compounds. Compared to honeys from other geographical origins, the absence or minor presence of propolis-derived flavonoids such as pinobanksin, pinocembrin, and chrysin in Australian honeys is significant. In conclusion, these results demonstrate that a common flavonoid profile exists for all of the Eucalyptus honeys, regardless of their geographical origins; the individual species-specific floral types of Eucalyptus honey so common in Australia could be possibly differentiated by their flavonoid profile differences, either qualitatively or quantitatively or both.  相似文献   

11.
A liquid chromatography-mass spectrometry (LC-MS)-based method was developed for the characterization of flavonoids from Sechium edule (Jacq) Swartz (Cucurbitaceae) edible organs, a plant cultivated since pre-Colombian times in Mexico where the fruit is called chayote. Chayote is used for human consumption in many countries; in addition to the fruits, stems, leaves and the tuberous part of the roots are also eaten. Eight flavonoids, including three C-glycosyl and five O-glycosyl flavones, were detected, characterized by nuclear magnetic resonance spectroscopic data, and quantified in roots, leaves, stems, and fruits of the plant by LC-photodiode array-MS. The aglycone moieties are represented by apigenin and luteolin, while the sugar units are glucose, apiose, and rhamnose. The results indicated that the highest total amount of flavonoids was in the leaves (35.0 mg/10 g of dried part), followed by roots (30.5 mg/10 g), and finally by stems (19.3 mg/10 g).  相似文献   

12.
It was assumed that gas-phase ligation of metal monocations by flavonoids might provide some insight on the intrinsic antioxidant activity of the latter. Thus, the ligation of Fe+ and Cu+ ions by apigenin (1), luteolin (2), kaempferol (3), quercetin (4), myricetin (5), and naringenin (6) was investigated in the gas phase in a Fourier transform mass spectrometer (FTMS). Both of the metal ions, which were produced by laser desorption ionization (LDI), bind consecutively to two neutral flavonoid molecules either with or without the simultaneous loss of some part (H, CO, H2O) of the latter. The flavonoids are present in the instrument at steady concentrations. The formation of flavonoid positive ions by charge exchange is also a common observation but is accompanied, in some cases, by a loss of H, CO, or H2O fragments. The reaction paths and observed fragmentations are presented. The results are supported by DFT B3LYP calculations that indicate a preference for metal ion attack at C-ring and not at the B-ring site considered to be mainly responsible for flavonoid antioxidant activity.  相似文献   

13.
There is current interest in the use of naturally occurring flavonoids as antioxidants for the preservation of foods and the prevention of diseases such as atherosclerosis and cancers. To establish the molecular characteristics required for maximum antioxidant activity, electron spin resonance (ESR) spectroscopy has been used to determine the stoichiometry and kinetics of the hydrogen-donating ability of 15 flavonoids and d-alpha-tocopherol to galvinoxyl, a resonance-stabilized, sterically protected aryloxyl radical. The second-order reaction rates, which will be governed by O-H bond dissociation energies, were myricetin > morin > quercetin > fisetin approximately catechin > kaempferol approximately luteolin > rutin > d-alpha-tocopherol > taxifolin > tamarixetin > myricetin 3',4',5'-trimethyl ether > datiscetin > galangin > hesperitin approximately apigenin. Reactivity is highly dependant on the configuration of OH groups on the flavonoid B and C rings, there being little contribution from the A ring to antioxidant effectiveness. Highest reaction rates and stoichiometries were observed with flavonols capable of being oxidized to orthoquinones or extended paraquinones. However, rates and stoichiometries did not always correlate and the data suggest that kinetic factors may be of greater importance within a biological context.  相似文献   

14.
【目的】研究施肥模式对茶叶生化成分含量和黄酮类及糖苷类代谢物累积的影响,为实现茶叶优质高产提供科学依据。【方法】田间试验设在四川茶树种植典型区域—雅安,试验连续进行了3年,设置不施肥(CK)、常量化肥(N 585 kg/hm2,TF)、有机肥替代25%化肥氮(OF)、减施25%氮肥(SF) 4个处理。分析了不同处理茶叶主要品质成分含量,并基于非靶向代谢组学检测结果分析了黄酮类及糖苷类代谢物累积差异。【结果】与C K处理相比,T F、 O F、 S F处理茶氨酸、游离氨基酸含量分别提高了7.2 2%~1 3.4 0%、23.15%~25.50%,可溶性糖和茶多酚含量分别降低了8.17%~13.86%、6.08%~11.49%,表儿茶素、表没食子儿茶素、芸香苷等10种代谢物累积水平显著下降。与TF处理相比,SF处理茶氨酸、咖啡碱和水浸出物含量分别降低了5.45%、5.97%、8.91%,茶多酚、可溶性糖、游离氨基酸含量和酚氨比无显著差异;芍药素-3-O-葡萄糖苷、肉桂萜醇C1-19-葡萄糖苷、查耳酮樱花素等7种代谢物累积水平显著降低,川陈皮素、牡荆素-4’-O-α-L-吡喃鼠李糖苷、(S)...  相似文献   

15.
Polyphenolic compounds in cranberries have been investigated to determine their role in protection against cardiovascular disease and some cancers. Extracts of whole fruit were assayed for radical-scavenging activity and tumor growth inhibition using seven tumor cell lines. Selective inhibition of K562 and HT-29 cells was observed from a methanolic extract in the range of 16-125 microg/mL. Radical-scavenging activity was greatest in an extract composed primarily of flavonol glycosides. Seven flavonol glycosides were isolated and purified from whole fruit for further evaluation; the anthocyanin cyanidin 3-galactoside was also purified for comparison with the flavonoids. Three flavonol monoglycosides were newly identified by (13)C NMR as myricetin 3-alpha-arabinofuranoside, quercetin 3-xyloside, and 3-methoxyquercetin 3-beta-galactoside (isorhamnetin); the other four isolated were the previously identified myricetin 3-beta-galactoside, quercetin 3-beta-galactoside, quercetin 3-alpha-arabinofuranoside, and quercetin 3-alpha-rhamnopyranoside. These compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity and ability to inhibit low-density lipoprotein oxidation in vitro. Most of the flavonol glycosides showed antioxidant activity comparable or superior to that of vitamin E; cyanidin 3-galactoside showed activity superior to that of the flavonoids as well as vitamin E or Trolox in both antioxidant assays.  相似文献   

16.
Identification and quantification of flavonol glycosides and secoiridoids was carried out on leaves of Ligustrum vulgare L. (Oleaceae) by means of HPLC-DAD and HPLC-MS analysis. In addition to previously reported secoiridoids (oleuropein, ligustaloside A, ligustaloside B, and ligstroside) four kaempferol glycosides (kaempferol 3-O-glucoside 7-O-rhamnoside, kaempferol 3, 7-O-dirhamnoside, kaempferol 3-O-rhamnoside, and kaempferol 3-O-glucoside) and two quercetin glycosides (quercetin 3-O-glucoside 7-O-rhamnoside and quercetin 3,7-O-dirhamnoside) were present in leaves of L. vulgare L. Although secoiridoids accounted for nearly the 76% of the total leaf polyphenols content (with ligustaloside A as the main component), kaempferol glycosides were also accumulated in the leaves of L. vulgare L. to a relatively high extent (23%). Contribution of quercetin derivatives was minor under our experimental conditions. Our findings suggest that flavonol glycosides may have a central role in both the ecology and the biology of L. vulgare L.  相似文献   

17.
The structure of flavonoids in food plants affects bioactivity and important nutritional attributes, like micronutrient bioavailability. This study investigated flavonol and anthocyanin compositions of cowpea (Vigna unguiculata) of varying genotypes. Black, red, green, white, light brown, and golden brown cowpea phenotypes were analyzed for anthocyanins and flavonols using ultra performance liquid chromatography-tandem quadrupole mass spectrometry. Eight anthocyanins and 23 flavonols (15 newly identified in cowpea) were characterized. Mono-, di-, and tri(acyl)glycosides of quercetin were predominant in most phenotypes; myricetin and kaempferol glycosides were present only in specific phenotypes. The red phenotypes had the highest flavonol content (880-1060 μg/g), whereas green and white phenotypes had the lowest (270-350 μg/g). Only black (1676-2094 μg/g) and green (875 μg/g) phenotypes had anthocyanins, predominantly delphinidin and cyanidin 3-O-glucosides. Cowpea phenotype influenced the type and amount of flavonoids accumulated in the seed; this may have implications in selecting varieties for nutrition and health applications.  相似文献   

18.
A standardized profiling method based on liquid chromatography with diode array and electrospray ionization/mass spectrometric detection (LC-DAD-ESI/MS) was used to analyze the phenolic compounds in the skins of 16 pears (Pyrus spp.). Thirty-four flavonoids and 19 hydroxycinnamates were identified. The main phenolic compounds (based on peak area) in all of the pear skins were arbutin and chlorogenic acid. The remaining phenolics varied widely in area and allowed the pears to be divided into four groups. Group 1, composed of four Asian pears (Asian, Asian brown, Korean, and Korean Shinko), contained only trace quantities of the remaining phenolics. Yali pear (group 2) contained significant amounts of dicaffeoylquinic acids. Fragrant pear (group 3) contained significant quantities of quercetin glycosides and lesser quantities of isorhamnetin glycosides and the glycosides of luteolin, apigenin, and chrysoeriol. The remaining 10 pears (group 4) (Bartlett, Beurre, Bosc, Comice, D'Anjou, Forelle, Peckham, Red, Red D'Anjou, and Seckel) contained significant quantities of isorhamnetin glycosides and their malonates and lesser quantities of quercetin glycosides. Red D'Anjou, D'Anjou, and Seckel pears also contained cyanidin 3-O-glucoside. Thirty-two phenolic compounds are reported in pear skins for the first time.  相似文献   

19.
The fruits of the date palm (Phoenix dactylifera) are consumed throughout the world and are an important part of the diet in the Middle East. Dates at the rutab and tamar maturity and ripening stages contain a wide array of phenolic antioxidants, but little is known about the composition of phenolic compounds in dates at the khalal stage of ripening. In the current study, the flavonoid glycoside and procyanidin compositions of dates of the cultivar Deglet Noor harvested at the khalal stage of maturity were characterized using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI/MS/MS). Procyanidin oligomers through decamers were identified in extracts of these dates. Higher molecular weight polymers, undecamers through heptadecamers, were also apparent from mass spectra. Thirteen flavonoid glycosides of luteolin, quercetin, and apigenin, 19 when considering isomeric forms, were also identified. Mass spectra indicate that both methylated and sulfated forms of luteolin and quercetin are present as mono-, di-, and triglycosylated conjugates whereas apigenin is present as only the diglycoside. LC-ESI/MS/MS spectra indicate that quercetin and luteolin formed primarily O-glycosidic linkages whereas apigenin is present as the C-glycoside.  相似文献   

20.
Eight varieties of lettuce (Lactuca sativum) and three varieties of endive (Cichorium endivia) were analyzed for flavonoid composition and content. Total flavonoid contents, expressed as units of aglycon for fresh material, were in the ranges of 0.3-229 microg/g for lettuce and 44-248 microg/g for endive. Five quercetin conjugates [quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-glucuronide, quercetin 3-O-(6-O-malonyl)glucoside, and quercetin 3-O-rhamnoside] and luteolin 7-O-glucuronide were measured in the green-leafed lettuce and an additional two cyanidin conjugates [cyanidin 3-O-glucoside and cyanidin 3-O-[(6-O-malonyl)glucoside]] in the red-leafed varieties. Three kaempferol conjugates [kaempferol 3-O-glucoside, kaempferol 3-O-glucuronide, and kaempferol 3-O-[6-O-malonyl)glucoside]] were measured in each of the endive varieties. The presence and identity of kaempferol 3-O-(6-O-malonyl)glucoside in endive was shown for the first time. Shredding of lettuce leaf followed by exposure to light produced significant losses of the flavonoid moiety in the green oak leaf (94%), red oak leaf (43%), iceberg (36%), green batavia (25%), lollo biondo (24%), and lollo rosso (6%) samples, whereas cos and green salad bowl samples did not show an overall loss. Shredding of endive also produced loss of the flavonoid moiety in escarole (32%), fine frisee (13%), and coarse frisee (8%). Significant demalonation was observed for both the quercetin and cyanidin glucosides in lettuce, whereas a similar degradation of the kaempferol analogue was found in endive tissue. Storage of whole heads of both lettuce and endive in the dark at 1 degrees C and 98% humidity for 7 days resulted in losses of total flavonol glycosides in the range of 7-46%. The identification of the amounts, position of substitution, and nature of the sugars is important for understanding the potential bioavailability and biological activities of flavonoids in salads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号