首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in elevation between 1975 and October 1980 along a leveling line across the Long Valley caldera indicate a broad (half-width, 15 kilometers) uplift (maximum, 0.25 meter) centered on the old resurgent dome. This uplift is consistent with reinflation of a magma reservoir at a depth of about 10 kilometers. Stresses generated by this magmatic resurgence may have caused the sequence of four magnitude 6 earthquakes near Mammoth Lakes in May 1980.  相似文献   

2.
Carbon dioxide degassing by advective flow from Usu volcano, Japan   总被引:1,自引:0,他引:1  
Magmatic carbon dioxide (CO2) degassing has been documented before the 31 March 2000 eruption of Usu volcano, Hokkaido, Japan. Six months before the eruption, an increase in CO2 flux was detected on the summit caldera, from 120 (September 1998) to 340 metric tons per day (September 1999), followed by a sudden decrease to 39 metric tons per day in June 2000, 3 months after the eruption. The change in CO2 flux and seismic observations suggests that before the eruption, advective processes controlled gas migration toward the surface. The decrease in flux after the eruption at the summit caldera could be due to a rapid release of CO2 during the eruption from ascending dacitic dikes spreading away from the magma chamber beneath the caldera.  相似文献   

3.
Comparison of precise leveling measurements made in 1923 with those made in 1975, 1976, and 1977 reveals that the 600,000-year-old Yellowstone caldera is being uplifted relative to its surroundings. Maximum relative uplift since 1923 is in excess of 700 millimeters-about 14 millimeters vertically per year. The most likely cause of this rapid and unusually large surface deformation is a recent influx of molten or partially molten materials to a location within the crust beneath Yellowstone National Park.  相似文献   

4.
Over a period of roughly 40 days, starting on 8 July 2000, a caldera structure 1.7 kilometers in diameter developed by means of gradual depression and expansion of the summit crater at Miyake Island, Japan. At the same time, very-long-period (VLP) seismic signals were observed once or twice a day. Source mechanism analyses of the VLP signals show that the moment tensor solutions are smooth step functions over a time scale of 50 seconds, with dominant volumetric change components. We developed a model to explain the caldera and the VLP signals, in which a vertical piston of solid materials in the conduit is intermittently sucked into the magma chamber by lateral magma outflow. This model offers potential for making quantitative estimations of the characteristic physical properties of magma systems.  相似文献   

5.
Ryall A  Ryall F 《Science (New York, N.Y.)》1983,219(4591):1432-1433
Intensive microearthquake swarms with the appearance of volcanic tremor have been observed in the southwest part of Long Valley caldera, southeastern California. This activity, possibly associated with magma injection, began 6 weeks after several strong (magnitude 6+) earthquakes in an area south of the caldera and has continued sporadically to the present time. The earthquake sequence and magmatic activity are part of a broad increase in tectonic activity in a 15,000-square-kilometer region surrounding the "White Mountains seismic gap," an area with high potential for the next major earthquake in the western Great Basin.  相似文献   

6.
Dynamics of slow-moving landslides from permanent scatterer analysis   总被引:3,自引:0,他引:3  
High-resolution interferometric synthetic aperture radar (InSAR) permanent scatterer data allow us to resolve the rates and variations in the rates of slow-moving landslides. Satellite-to-ground distances (range changes) on landslides increase at rates of 5 to 7 millimeters per year, indicating average downslope sliding velocities from 27 to 38 millimeters per year. Time-series analysis shows that displacement occurs mainly during the high-precipitation season; during the 1997-1998 El Ni?o event, rates of range change increased to as much as 11 millimeters per year. The observed nonlinear relationship of creep and precipitation rates suggests that increased pore fluid pressures within the shallow subsurface may initiate and accelerate these features. Changes in the slope of a hill resulting from increases in the pore pressure and lithostatic stress gradients may then lead to landslides.  相似文献   

7.
Satellite interferometric synthetic aperture radar is uniquely suited to monitoring year-to-year deformation of the entire Yellowstone caldera (about 3000 square kilometers). Sequential interferograms indicate that subsidence within the caldera migrated from one resurgent dome to the other between August 1992 and August 1995. Between August 1995 and September 1996, the caldera region near the northeast dome began to inflate, and accompanying surface uplift migrated to the southwest dome between September 1996 and June 1997. These deformation data are consistent with hydrothermal or magmatic fluid migration into and out of two sill-like bodies that are about 8 kilometers directly beneath the caldera.  相似文献   

8.
A deep earthquake swarm in late 2003 at Lake Tahoe, California (Richter magnitude < 2.2; depth of 29 to 33 kilometers), was coeval with a transient displacement of 6 millimeters horizontally outward from the swarm and 8 millimeters upward measured at global positioning system station Slide Mountain (SLID) 18 kilometers to the northeast. During the first 23 days of the swarm, hypocentral depths migrated at a rate of 2.4 millimeters per second up-dip along a 40-square-kilometer structure striking north 30 degrees west and dipping 50 degrees to the northeast. SLID's transient velocity of 20 millimeters per year implies a lower bound of 200 nanostrains per year (parts per billion per year) on local strain rates, an order of magnitude greater than the 1996 to 2003 regional rate. The geodetic displacement is too large to be explained by the elastic strain from the cumulative seismic moment of the sequence, suggesting an aseismic forcing mechanism. Aspects of the swarm and SLID displacements are consistent with lower-crustal magma injection under Lake Tahoe.  相似文献   

9.
An anomalous topographic high located close to the intersection of the Owen Fracture Zone with the Mid-Indian Ridge exposes exclusively ultramafic rocks for a thickness of more than 2 kilometers. The rocks, consisting of partly serpentinized spinel lherzolites, with minor harzburgites and dunites, display protogranular to porphyroclastic fabrics, but no cumulate textures. The chemistry of olivine, ortho-and clinopyroxene, and spinel crystals suggests that the rocks originated at a depth of at least 25 kilometers in the oceanic lithosphere and were partially reequilibrated and recrystallized during subsequent upwelling. Thus, field, textural, and mineral chemistry data indicate the presence of an uplifted block of upper mantle. The considerable vertical uplift can be explained by a two-stage process: mantle upwelling in the axial zone of plate accretion, followed by vertical tectonic uplift along the fracture zone. The rate of uplift in the fracture zone was of the order of 1 millimeter per year.  相似文献   

10.
The late Quaternary marine terraces near Santa Cruz, California, reflect uplift associated with the nearby restraining bend on the San Andreas fault. Excellent correspondence of the coseismic vertical displacement field caused by the 17 October 1989 magnitude 7.1 Loma Prieta earthquake and the present elevations of these terraces allows calculation of maximum long-term uplift rates 1 to 2 kilometers west of the San Andreas fault of 0.8 millimeters per year. Over several million years, this uplift, in concert with the right lateral translation of the resulting topography, and with continual attack by geomorphic processes, can account for the general topography of the northern Santa Cruz Mountains.  相似文献   

11.
Aircraft laser-altimeter surveys over southern Greenland in 1993 and 1998 show three areas of thickening by more than 10 centimeters per year in the southern part of the region and large areas of thinning, particularly in the east. Above 2000 meters elevation the ice sheet is in balance but thinning predominates at lower elevations, with rates exceeding 1 meter per year on east coast outlet glaciers. These high thinning rates occur at different latitudes and at elevations up to 1500 meters, which suggests that they are caused by increased rates of creep thinning rather than by excessive melting. Taken as a whole, the surveyed region is in negative balance.  相似文献   

12.
Application of simultaneous inversion of seismic P-wave arrival time data to the investigation of the crust beneath Kilauea Volcano yields a detailed picture of the volcano's heterogeneous structure. Zones of anomalously high seismic velocity are found associated with the volcano's rift zones. A low-velocity zone at shallow depth directly beneath the caldera coincides with an aseismic region interpreted as being the locus of Kilauea's summit magma complex.  相似文献   

13.
Pyroclastic eruption and the intrusion of batholiths associated with large-volume ash-flow tuffs may be driven by a decrease in reservoir pressure caused by the low density of the magma column due to vesiculation. Batholithic intrusion would then be accomplished by the subsidence and settling of kilometer-sized crustal blocks through the magma chamber, resulting in eventual collapse to form large caldera structures at the surface. Such a model does not require the formation of a large, laterally extensive, shallow magma chamber before the onset of large-volume ash-flow eruptions. Eruption could commence directly from a deeper reservoir, with only a small channelway being opened to the surface before the onset of catastrophic ash-flow eruptions of the scale of Yellowstone or Long Valley. Such a model has wide-ranging implications, and explains many of the problems inherent in the simple collapse model involving shallow magna chambers as well as the process and timing of batholith intrusion in such cases.  相似文献   

14.
The response of a large geothermal system to magmatic resurgence was analyzed by a survey of soil gas radon and elemental mercury at 600 sites in the silicic Long Valley Caldera, California. The broad geochemical anomaly over the caldera has superimposed on it a small zone of pronounced radon enrichment and mercury depletion coincident with the surface projection of a postulated dike of rising magma. Soil gas geochemistry studies can complement traditional geophysical and geodetical methods in the evaluation of potential volcanic eruption hazards.  相似文献   

15.
Total extrusive and intrusive magma generated on Mars over the last approximately 3.8 billion years is estimated at 654 x 10(6) cubic kilometers, or 0.17 cubic kilometers per year (km(3)/yr), substantially less than rates for Earth (26 to 34 km(3)/yr) and Venus (less than 20 km(3)/yr) but much more than for the Moon (0.025 km(3)/yr). When scaled to Earth's mass the martian rate is much smaller than that for Earth or Venus and slightly smaller than for the Moon.  相似文献   

16.
Oxygen isotope analyses of sanidine phenocrysts from rhyolitic sequences in Nevada, Colorado, and the Yellowstone Plateau volcanic field show that delta(18)O decreased in these magmas as a function of time. This decrease in delta(18)O may have been caused by isotopic exchange between the magma and groundwater low in (18)O. For the Yellowstone Plateau rhyolites, 7000 cubic kilometers of magma could decrease in delta(18)O by 2 per mil in 600,000 years by reacting with water equivalent to 3 millimeters of precipitation per year, which is only 0.3 percent of the present annual precipitation in this region. The possibility of reaction between large magmatic bodies and meteoric water at liquidus temperatures has major implications in the possible differentiation history of the magma and in the generation of ore deposits.  相似文献   

17.
The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a fundamental structure in the relatively shallow and brittle lithosphere overhead. The concept that a northeastwardpropagating major crustal fracture controls the migration path of the major foci of volcanisim is at least equally favored by existing data, as Smith et al. (19) noted.  相似文献   

18.
After a magnitude 7.2 earthquake in 1975 and before the start of the ongoing eruption in 1983, deformation of Kilauea volcano was the most rapid ever recorded. Three-dimensional numerical modeling shows that this deformation is consistent with the dilation of a dike within Kilauea's rift zones coupled with creep over a narrow area of a low-angle fault beneath the south flank. Magma supply is estimated to be 0.18 cubic kilometers per year, twice that of previous estimates. The 1983 eruption may be a direct consequence of the high rates of magma storage within the rift zone that followed the 1975 earthquake.  相似文献   

19.
Erratum     
《Science (New York, N.Y.)》1988,239(4839):451
The final paragraph of Richard A. Kerr's article "Drilling into surprises beneath an Inyo Crater" (Research News, 22 Jan., p. 350) should have read: "A bit disconcertingly, the magma influx to the chamber seems to be continuing at a reduced rate of about 5 million cubic meters per year. At that rate, only a few decades would be needed to accumulate the volume of magma produced by one of the eruptions 600 years ago."  相似文献   

20.
Satellite radar interferometry observations of the Reykjanes Peninsula oblique rift in southwest Iceland show that the Reykjanes central volcano subsided at an average rate of up to 13 millimeters per year from 1992 to 1995 in response to use of its geothermal field. Interferograms spanning up to 3.12 years also include signatures of plate spreading and indicate that the plate boundary is locked at a depth of about 5 kilometers. Below that depth, the plate movements are accommodated by continuous ductile deformation, which is not fully balanced by inflow of magma from depth, causing subsidence of the plate boundary of about 6.5 millimeters per year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号