首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.  相似文献   

2.
The clocklike properties of pulsars moving in the gravitational fields of their unseen neutron-star companions have allowed unique tests of general relativity and provided evidence for gravitational radiation. We report here the detection of the 2.8-second pulsar J0737-3039B as the companion to the 23-millisecond pulsar J0737-3039A in a highly relativistic double neutron star system, allowing unprecedented tests of fundamental gravitational physics. We observed a short eclipse of J0737-3039A by J0737-3039B and orbital modulation of the flux density and the pulse shape of J0737-3039B, probably because of the influence of J0737-3039A's energy flux on its magnetosphere. These effects will allow us to probe magneto-ionic properties of a pulsar magnetosphere.  相似文献   

3.
The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.  相似文献   

4.
Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.  相似文献   

5.
Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.  相似文献   

6.
Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.  相似文献   

7.
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.  相似文献   

8.
Will CM 《Science (New York, N.Y.)》1990,250(4982):770-776
The status of experimental tests of general relativity is reviewed on the occasion of its 75th anniversary. Einstein's equivalence principle is well supported by experiments such as the E?tv?s experiment, tests of special relativity, and the gravitational redshift experiment. Tests of general relativity have reached high precision, including the light deflection and the perihelion advance of Mercury, proposed by Einstein 75 years ago, and new tests such as the Shapiro time delay and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected to an accuracy of 1 percent on the basis of measurements of the binary pulsar. The status of the "fifth force" is discussed, along with the frontiers of experimental relativity, including proposals for testing relativistic gravity with advanced technology and spacecraft.  相似文献   

9.
Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.  相似文献   

10.
We have discovered a 716-hertz eclipsing binary radio pulsar in the globular cluster Terzan 5 using the Green Bank Telescope. It is the fastest spinning neutron star found to date, breaking the 24-year record held by the 642-hertz pulsar B1937+21. The difficulty in detecting this pulsar, because of its very low flux density and high eclipse fraction (approximately 40% of the orbit), suggests that even faster spinning neutron stars exist. If the pulsar has a mass less than twice the mass of the Sun, then its radius must be constrained by the spin rate to be <16 kilometers. The short period of this pulsar also constrains models that suggest that gravitational radiation, through an r-mode (Rossby wave) instability, limits the maximum spin frequency of neutron stars.  相似文献   

11.
We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.  相似文献   

12.
The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.  相似文献   

13.
We report the detection of magnetar-like x-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be exclusively rotation-powered, has an inferred surface dipolar magnetic field of 4.9 x 10(13) gauss, which is higher than those of the vast majority of rotation-powered pulsars, but lower than those of the approximately 12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.  相似文献   

14.
Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.  相似文献   

15.
The pulse structure of the four known pulsars is given. The pulse is about 38 milliseconds for the two pulsars of longest period, and within the pulsewidth three subpulses typically appear. The pulsar of next longest period typically radiates two pulses separated about 23 milliseconds in time. The one short-period pulsar emits single pulses of constant shape. The first subpulses of all pulsars have nearly the same shape. The shape of the first subpulse agrees well with the pulse shape expected from a radio-emitting sphere which is excited by a spherically expanding disturbance, and in which the radio emission, once excited, decays exponentially.  相似文献   

16.
The existing observational data for the binary pulsar PSR 1913 + 16 are sufficient to give a rather well-defined model for the system. On the basis of evolutionary considerations, the pulsar must be a neutron star near the upper mass limit of 1.2 solar masses (M.). The orbital inclination is probably high, i>/= 700, and the mass of the unseen companion probably lies close to the upper limit of the range 0.25 M. to 1.0 M.. The secondary cannot be a main sequence star and is probably a degenerate helium dwarf. At the 5.6-kiloparsec distance indicated by the dispersion measure, the magnetic dipole model gives an age of approximately 4 x 104 years, a rate of change of the pulsar period of P approximately 2 nanoseconds per day, and a surface magnetic field strength approximately (1/3) that of the Crab pulsar. The pulsar is fainter than an apparent magnitude V approximately + 26.5 and is at least approximately 80 times fainter than the Crab pulsar in the x-ray band. The companion star should be fainter than V approximately + 30, and a radio supernova remnant may be detectable near the position of the pulsar at a flux level of 相似文献   

17.
Spectroscopic observations of the two stars near the pulsar CP 1919+21 are not sufficiently conclusive to permit an identification of either object with the source of the radio pulses. However, our most extensive series of photometric observations of a region of sky near the radio source position, which region includes the brighter of the two stars, suggests an approximately sinusoidal variation. It is significant that the period of the variation is double the period of the radio pulsations.  相似文献   

18.
19.
在有效质量口袋模型(EMBM)下采用密度依赖口袋常数描述奇异夸克物质,研究了口袋常数的密度依赖性对奇异夸克物质的状态方程及奇异星性质的影响.结果表明,密度依赖口袋常数在低密度处较大,随着密度增大而明显变小,很好地体现了低密度处色禁闭、高密度处夸克退紧闭的量子色动力学(QCD)基本精神.与常数口袋常数的情形相比,密度依赖口袋常数下奇异夸克物质的状态方程变硬,奇异星的引力质量和对应的半径均有明显变大,且均在脉冲星的观测值范围内,表明该模型适合于描述质量和半径较大的奇异星内的夸克物质.  相似文献   

20.
Supermassive black holes (SMBHs; mass is greater than or approximately 10(5) times that of the Sun) are known to exist at the center of most galaxies with sufficient stellar mass. In the local universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, which often comes in the form of long-term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a ~200-second x-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号