首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A carbonaceous sorbent produced from rice husk via sulphuric acid treatment was used to remove Cr(VI) from aqueous solutions varying contact time, pH, Cr(VI) concentration and sorbent status (wet and dry). Cr(VI) was removed from the aqueous solution via reduction to Cr(III) and sorption. Reduction and sorption processes were investigated in terms of kinetics and equilibrium. The rate of reduction removal of Cr(VI) at pH 2 followed a pseudo first-order model while the rate of sorption of total chromium followed pseudo second-order model. Chromium sorption was highly dependent on the initial pH value with reduction taking place in solution with pH up to 7 showing sorption maxima in the pH range 1.8–2.8 for concentration range 100–500 mg/l with an increase in the equilibrium pH. Carbon dioxide evolved from the sorption media was determined. Reduction–sorption mechanism was investigated via physicochemical tests including cation exchange capacity, base neutralization and sorbent acidity in addition to FTIR studies for sorbent samples before and after sorption reaction.  相似文献   

2.
The present study explained the effect of pretreatments on the biosorption of Cr (III) and Cr (VI) by Cassia fistula biomass from aqueous solutions. For this purpose Cassia fistula biomass was pretreated physically by heating, autoclaving, boiling and chemically with sodium hydroxide, formaldehyde, gluteraldehyde, acetic acid, hydrogen peroxide, commercial laundry detergent, orthophosphoric, sulphuric acid, nitric acid, and hydrochloric acid. The adsorption capacity of biomass for Cr (III) and Cr (VI) was found to be significantly improved by the treatments of gluteraldehyde (95.41 and 96.21 mg/g) and benzene (85.71 and 90.81 mg/g) respectively. The adsorption capacity was found to depend on pH, initial metal concentration, dose, size, kinetics, and temperature. Maximum adsorption of both the Cr (III) and Cr (VI) was observed at pH 5 and 2. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. The kinetic studies showed that the sorption rates could be described better by a second order expression than by a more commonly applied Lagergren equation.  相似文献   

3.
The pulp left after the extraction of juice from Citrus reticulate (kinnow), is a waste material, which was used as a potential sorbent for Cr(III) and Cr(VI) in the present study. The effect of experimental parameters such as pH, biosorbent dosage, biosorbent particle size, initial metal concentrations, temperature, shaking speed and sorption time on the Cr removal is apparent from the obtained results. The Freundlich isotherm and pseudo second order kinetic models fitted well to the data of Cr(III) and Cr(VI) biosorption by Citrus reticulata waste biomass. Effect of several pretreatments such as gases, natural coagulant and many other chemicals on Cr(III) and Cr(VI) sorption capacity of Citrus reticulata waste biomass was first time analyzed in the present study. The metal sorption capacity of Citrus reticulata waste biomass after a specific pretreatment was not only related to the nature of chemical but also strongly dependent on the oxidation state of the metal.  相似文献   

4.
胶质芽孢杆菌GY03菌株对铬离子的吸附能力研究   总被引:13,自引:0,他引:13  
CHEN Ye  LIAN Bin 《土壤圈》2005,15(2):225-231
A research with Bacillus mucilaginosus cultured in nitrogen-free medium for forming a flocculant material to adsorb Cr^ 6 was conducted to determine the effects of different pH, volume, treatment time, and chromium (Ⅵ) concentrations on chromium (Ⅵ) adsorption by microbial flocculant (MBF), which was produced from the B. mucilaginosus GY03 strain. The results showed that MBF had outstanding flocculation on chromium (Ⅵ). Based on the results of a oneway experiment and actual wastewater treatment conditions, the optimum conditions, obtained by using orthogonal experiments, for chromium (Ⅵ) adsorption by MBF were: Cr^6 solution pH of 9, flocculant material volume of 15 mL,treatment time of 12 h and chromium ion concentration of 30 mg L^-1. The results demonstrated that the MBF produced from GY03 could be used in the chromium-containing wastewater treatment. Meanwhile, after extraction and analysis of the MBF polysaccharides, it was found that MBF was mainly composed of glycoprotein. Analysis on constituents of monosaccharide showed that polysaccharides of B. mucilaginosus were composed of rhamnose, glucose etc. Thus, because it was applied over a wide range of pH, in small amounts and had a rapid flocculation speed the flocculant used in this experiment had a vast field of application potential.  相似文献   

5.
Abstract

Chromium (Cr) appears in two stable forms in nature as Cr(III) and Cr(VI). Hexavalent chromium (CrO4 2‐; Cr2O7 2‐) is very toxic and carcinogenic, while inorganic Cr(III), however, is essential for mammals. Only two methods, atomic absorption and inductively coupled plasma atomic emission (ICP) spectrometry, provide information on the total amount of Cr in a test solution. This is the reason that several efforts have been made with regard to Cr speciation. Either an acidic or a basic activated aluminum oxide and a reversed phase C‐18 column or an ion exchanger column are used for the separation of chromium(III) from chromium(VI) in FIA and HPLC analyses. In our experiments, acidic‐activated aluminum oxide was used for separation. This alumina was placed into a silicon tube and connected to an ICP spectrometer between the nebulizer and peristaltic pump. The average grain size of the alumina was large enough that the solution could be pumped through the micro column. Acidic‐activated aluminum oxide in the 2.0 to 8.0 pH range adsorbs the chromate anion but not the Cr(III) cation. During this stage, the Cr(III) content of a sample is measurable. The adsorbed chromate can be eluted with a strong acid. The height or area of the elution peak can be used for the calibration of Cr(VI). Detection limits of 4 μg/kg and 0.5 μg/kg were obtained for Cr(III) and Cr(VI), respectively. The effects of sulphate and phosphate anions on the surface of the alumina on chromate adsorption were also evaluated. This method was used for the measurement of Cr(VI) concentration by 0.01M CaCl2 extraction of soil.  相似文献   

6.
Abstract

A rapid, sensitive, and accurate method for the separation and speciative determination of chromium (Cr)(VI) and Cr(III) in water samples has been developed using sorption as the separation technique in conjunction with final determination by electrothermal atomic absorption spectroscopy (ETAAS). The present method, where granular calcite is used as selective sorbent, separates Cr(III) with retention values up to 99%, resulting in high accuracy determination of Cr(VI). Total Cr was likewise determined by ETAAS after an efficient reduction of Cr(VI) to Cr(III) using ascorbic acid as reducing agent, deriving Cr(III) concentration from the difference between total Cr and Cr(VI). The parameters of the separation technique, solution pH (4.5–5.5), solution flow rate through the calcite column (0.14–0.42 mL min?1), and calcite column internal diameter (1.5–3.0 cm), were evaluated. Best results were achieved with pH of 5.5, flow rate of 0.42 mL min?1, and column internal diameter of 1.5 cm. Optimum determination conditions were found using magnesium nitrate [Mg(NO3)2] as chemical modifier, pyrolysis, and atomization temperatures of 1400 and 2200°C, respectively. In such conditions, the detection limits (n=10) were 1.5 and 0.8 µg L?1 for Cr(III) and Cr(VI), respectively.  相似文献   

7.
Streptomyces sp. MC1, previously isolated from sugar cane, has shown ability to reduce Cr(VI) in liquid minimal medium and soil samples. The objective of this work was to demonstrate the intracellular chromium accumulation by Streptomyces sp. MC1 under different culture conditions. This strain was able to accumulate up to 3.54 mg of Cr(III) per gram of wet biomass, reducing the 98% of Cr(VI) and removing 13.9% of chromium from the culture medium supernatants. Streptomyces sp. MC1 chromium bioaccumulation ability was corroborated by using Timm’s reagent technique, a low-cost method, which has been used by first time to detect chromium deposits in bacteria. The results of atomic absorption spectrometry, scanning electron microscopy, and energy dispersive X-ray analysis suggest that the mechanism of Cr(VI) resistance observed in Streptomyces sp. MC1 includes adsorption coupled with reduction to Cr(III), and finally, Cr(III) bioaccumulation. This mechanism have special relevance to remediation of Cr(VI) contaminated environments by Streptomyces sp. MC1.  相似文献   

8.
Extensive use of chromium in industry has caused environmental contamination. Chromium-resistant bacteria are capable of reducing toxic Cr (VI) to less toxic Cr (III). Eight isolates, which can grow on LB agar containing 500 mg/L of Cr (VI), were isolated from soil samples of iron mineral area. The bacterial isolates were identified as Bacillus sp. by the 16S rRNA gene sequences. Phylogenetic tree analysis indicates the isolates can be divided into two groups. The bacterial isolates can be resistant to other heavy metals and reduce Cr (VI) at different levels. One bacterial isolate (MDS05), which can tolerate 2500 mg/L Cr (VI) and was able to reduce almost 100% of Cr (VI) at the concentration of 10 mg/L in 24 h, was selected to study the effects of some environmental factors such as pH, temperature, and time on Cr (VI) reduction and growth. The cell growth of MDS05 was affected by the presence of Cr (VI), especially at the concentration of 100 mg/L. It reduced more amount of Cr (VI) under a wide range of concentrations from 5 to 50 mg/L, and reduction was optimum at 37 °C and pH 8. MDS05 showed great promise for use in Cr (VI) detoxification under a wide range of environmental conditions.  相似文献   

9.
Exposure to divalent nickel [Ni(II)] poses a significant risk to human health. The present study was conducted to evaluate the biosorption capacity of acorn shell of Quercus crassipes Humb. & Bonpl. (QCS) for removal of Ni(II) ions from aqueous solutions in terms of kinetics, equilibrium, and thermodynamics. Batch biosorption studies showed that the Ni(II) biosorption behavior of QCS is strongly dependent on solution pH, shaking contact time, initial Ni(II) concentration, and temperature. Specifically, Ni(II) biosorption was found to increase with increasing solution pH, contact time, initial Ni(II) concentration, and temperature. Modeling of the Ni(II) biosorption kinetic and equilibrium data showed that the best agreement of experimental data was achieved with the pseudo-second-order kinetics model and the Freundlich isotherm model, respectively. The calculated thermodynamic parameters indicated that the Ni(II) biosorption process was endothermic, non-spontaneous, and chemical in nature. Fourier-transform infrared (FTIR) spectroscopy analysis showed that acidic functional groups, namely hydroxyl, carbonyl, and carboxyl functional groups, present on the QCS surface are likely to be involved in the biosorption of Ni(II) ions. The performance of QCS was compared with those of other reported biosorbents in terms of the efficiency of Ni(II) removal from aqueous solutions, revealing that QCS is highly effective in terms of its biosorption capacity. These findings indicate that QCS can be used as a low-cost, highly effective, and environmentally friendly alternative biosorbent for the detoxification of Ni(II)-contaminated water and wastewater.  相似文献   

10.
The sorption of chromium (Cr) species to soil has become the focus of research as it dictates the bioavailability and also the magnitude of toxicity of Cr. The sorption of two environmentally important Cr species [Cr(III) and Cr(VI)] was examined using batch sorption, and the data were fitted to Langmuir and Freundlich adsorption isotherms. The effects of soil properties such as pH, CEC, organic matter (OM), clay, water-extractable SO4 2– and PO4 3–, surface charge, and different iron (Fe) fractions of 12 different Australian representative soils on the sorption, and mobility of Cr(III) and Cr(VI) were examined. The amount of sorption as shown by K f was higher for Cr(III) than Cr(VI) in all tested soils. Further, the amount of Cr(III) sorbed increased with an increase in pH, CEC, clay, and OM of soils. Conversely, the chemical properties of soil such as positive charge and Fe (crystalline) had a noticeable influence on the sorption of Cr(VI). Desorption of Cr(VI) occurred rapidly and was greater than desorption of Cr(III) in soils. The mobility of Cr species as estimated by the retardation factor was higher for Cr(VI) than for Cr(III) in all tested soils. These results concurred with the results from leaching experiments which showed higher leaching of Cr(VI) than Cr(III) in both acidic and alkaline soils indicating the higher mobility of Cr(VI) in a wide range of soils. This study demonstrated that Cr(VI) is more mobile and will be bioavailable in soils regardless of soil properties and if not remediated may eventually pose a severe threat to biota.  相似文献   

11.
Soluble chromate concentrations as high as 200 μg Cr L-1 have been reported in water samples from monitoringwells tapping alluvial deposits allegedly contaminated bylaboratory waste as well as control wells off site andupgradient (shallow aquifer) near Davis California, U.S.A. In this report we present evidence that these Cr(VI) levelscould have been generated by geogenic processes rather thanby anthropogenic inputs. We tested the hypothesis thatnative Cr(III) has been and can be oxidized to chromate bynative manganese oxides. Twenty-three drill core samples(all unsaturated) were retrieved from depths varying from1.5 to 22.5 m in 6 different wells. Visible nodules ofMnO2 were dispersed throughout many of the samples andcarbonates were also present. Sample pH values averagedabout 8.0 and organic C was mostly less than 1.0 g kg-1. Total Mn and Cr averaged 835 and 191 mg kg-1respectively. All samples had the capability to oxidizeadded Cr(III) to Cr(VI). To determine the inherent capabilityof the samples to produce Cr(VI) from native Cr(III), subsamples were extracted with 5 mM CaSO4 plus 5 mM MgSO4 until Cr(VI) was no longer detected. After freeze-drying, deionized-distilled water was added to theleached samples to approximately field capacity (0.03 MPa). Freeze drying did not generate Cr(VI). These samples wereincubated in polyethylene film bags at room temperature inthe dark. After 1 week incubation, water in the samples wasextracted by centrifugation and the extracts were analyzedfor Cr(VI). All of the samples generated Cr(VI), and theconcentrations in the extracts ranged from 20 to 100 μg Cr L-1. Total chromium, endemic chromium VI and chromium VI generated in leached samples were not statistically different between samples from onsite and control samples taken offsite and upgradient in respect to the shallowest aquifer.  相似文献   

12.
Hexavalent chromium (Cr(VI)) and dyes are of particular environmental concern and need to be removed from water urgently due to their high toxicity. Herein, we explored the possibility of electron transferring from dye Orange II (OII) to Cr(VI) under UV and simulated solar light irradiation, expecting to simultaneously decolorize dyes and reduce Cr(VI). Experimental results show that light irradiation can partially decolorize OII but has no ability to reduce Cr(VI) in solution only with OII or Cr(VI). However, both dyes and Cr(VI) can effectively and simultaneously be decolorized and reduced in the solution containing both OII and Cr(VI) under light irradiation, and a low pH level and high OII/Cr(VI) concentration ratio significantly favor the co-removal. Additionally, insoluble organo–Cr(III) complexes identified by FTIR and XPS characterization were generated during the reaction. These complexes are beneficial to the removal of chromium and total organic carbon from water. The possible degradation pathway of OII is further proposed based on the detection of degraded products by GC-MS analysis. The results of this work offer an approach for simultaneously removing multiple contaminants.  相似文献   

13.
The sorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution using alum-derived water treatment sludge was investigated using the batch adsorption technique. Samples of sludge from two separate water treatment plants were used (one where alum was used alone and one where it was used in combination with activated C). The sorption characteristics of the two samples were generally very similar. Sorption isotherm data for all three ions fitted equally well to both Freundlich and Langmuir equations. Maximum sorption capacity and indices of sorption intensity both followed the order: Cr(III)?>?Pb(II)?>?Cr(VI). Kinetic data correlated well with a pseudo-second-order kinetic model suggesting the process involved was chemisorption. Sorption was pH-dependant with percentage sorption of Cr(III) and Pb(II) increasing from <30% to 100% between pH?3 and 6 whilst that of Cr(VI) declined greatly between pH?5 and 8. HNO3 at a concentration of 0.1?M was effective at removing sorbed Cr(III) and Pb(II) from the sludge surfaces and regeneration was successful for eight sorption/removal cycles. It was concluded that water treatment sludge is a suitable material from which to develop a low-cost adsorbent for removal of Cr and Pb from wastewater streams.  相似文献   

14.
Adsorption of Cr (VI) as CDC-complex from aqueous solution by activated C has been investigated. Factors like pH and presence of Cr (III) which affect the adsorption of CDC-complex were studied. The increase in particle size and surface area of activated C does not enhance the removal of CDC-complex. For different concentrations of Cr, the optimum quantity of Diphenyl Carbazide has been determined. The reduced Cr e.g. Cr (III) decreases the CDC-complex removal. The Langmuir and Freundlich isotherms constant as calculated are γm=1.8932 and b=0.2305 and n=0.036, log K=0.0266, respectively.  相似文献   

15.
The present study deals with the synthesis and subsequent application of Fe3O4@n-SiO2 nanoparticles for the removal of Cr(VI) from aqueous solutions. Rice husk, an agrowaste material, was used as a precursor for the synthesis of nanoparticles of silica. Synthesized nanoparticles were characterized by XRD and SEM to investigate their specific characteristics. Fe3O4@n-SiO2 nanoparticles were used as adsorbent for the removal of Cr(VI) from their aqueous solutions. The effects of various important parameters, such as initial Cr(VI) concentration, adsorbent dose, temperature, and pH, on the removal of Cr(VI) were analyzed and studied. A pH of 2.0 was found to be optimum for the higher removal of Cr(VI) ions. It was observed that removal (%) decreased by increasing initial Cr(VI) concentration from 1.36?×?10-2 to 2.4?×?10-2 M. The process of removal was found to be endothermic, and the removal increased with the rise in temperature from 25 to 45 °C. The kinetic data was better fitted in pseudo-second-order model in comparison to pseudo-first-order model. Langmuir and Freundlich adsorption capacities were determined and found to be 3.78 and 1.89 mg/g, respectively, at optimum conditions. The values of ΔG 0 were found to be negative at all temperatures, which confirm the feasibility of the process, while a positive value of ΔH 0 indicates the endothermic nature of the adsorption process. The present study revealed that Fe3O4@n-SiO2 nanoparticles can be used as an alternate for the costly adsorbents, and the outcome of this study may be helpful in designing treatment plants for treatment of Cr(VI)-rich effluents.  相似文献   

16.
Reduction of Cr(VI) by soil humic acids   总被引:1,自引:0,他引:1  
The rate of hexavalent chromium reduction by a soil humic acid (SHA) was investigated in aqueous solutions where concentrations of Cr(VI), H+, and SHA were independently varied. Rate experiments were done with a large excess of SHA over Cr(VI). Rates of reduction depend strongly on [H+], increasing with decreasing pH. Typical Cr(VI)-SHA reactions display a nonlinear reduction of Cr(VI) with time that cannot be modelled with simple first- or second-order rate equations. An empirical rate equation is developed for Cr(VI)-soil humic acid reactions over a range of experimental conditions. The model is in part based on a reactive continuum concept developed for soil fulvic acids. The rate equation describing Cr(VI) reduction by SHA is: R= -(k0+k[H+]1/2)[HCrO4?]1/2Xe?1, where k0 is (8·3 ± 1·2) × 10?12, s?1k is (2·04 ± 0·05) × 10?9 l1/2 mol?1/2 s?1, and Xe is the equivalent fraction of SHA oxidized. The rate equation adequately models Cr(VI) reduction in an experiment with [Cr(VI)]0 four times greater than the maximum concentration used in its derivation. Cr(VI) reduction at pH 3 by two other SHAs can also be modelled using the rate equation. The difference between the rate coefficients for the humic acid and the fulvic acid from the same soil was greater than the difference in the rate coefficients for humic acids from different soils.  相似文献   

17.
Hexavalent chromium [Cr(VI)] is highly toxic, teratogenic and carcinogenic to man and other animals. Some bacterial species have the ability to reduce Cr(VI) to a stable speciation state of trivalent chromium [Cr(III)], which is insoluble and comparatively less toxic. Therefore, the reduction of Cr(VI) thus provides potential as a means for environmental bioremediation of Cr(VI) pollution. In the present study bacteria isolated from chromium and diesel contaminated sites were found to have the ability to rapidly reduce highly toxic concentrations of Cr(VI) to Cr(III) when grown in minimal medium supplemented with glucose as the sole carbon source. Partial chromate reductase gene sequences were retrieved after PCR amplification of genomic DNA extracted from three Gram positive isolates which were highly similar (>99% sequence similarity) to chromate reductase genes found in Gram negative bacteria, more specifically those identified from Escherichia coli and Shigella spp. whole-genome studies. The isolated bacteria were putatively identified by 16S rRNA gene sequencing as Arthrobacter aurescens strain MM10, Bacillus atrophaeus strain MM20, and Rhodococcus erythropolis strain MM30.  相似文献   

18.
ABSTRACT

Modification of biochar using chitosan and hematite made the biochar product more effective for hexavalent chromium (Cr (VI)) reduction in contaminated soils. Release experiment was conducted to examine Cr (VI) reduction in different treatments (control, unmodified biochar and two modified biochars with chitosan or hematite). The results indicated that the application of all treatments significantly decreased the release rate of Cr in comparison to the control treatment. Chitosan-modified biochar application increased Cr (VI) reduction from 28.53% (biochar) to 46.23%. In the case of hematite-modified biochar, it increased Cr (VI) reduction from 28.55% (biochar) to 38.95%. Two kinetic equations including pseudo-first-order and pseudo-second-order models employed to describe the time-dependent Cr release data. Between the kinetic equations estimated, the pseudo-second order best fitted to experimental data. In the presence of Pseudomonas putida, cumulative Cr release rate decreased by 2.38 mg kg?1 (50.29%) in hematite–biochar and 1.768 mg kg?1 (39.73%) in unmodified biochar as compared with control (4.43 mg kg?1). According to results reported herein, modification of biochar with chitosan or hematite is promising since made biochar more effective in removing Cr from Cr-polluted calcareous soils.  相似文献   

19.
Disposal of chromium(Cr) hexavalent form,Cr(VI),in soils as additions in organic fertilizers,liming materials or plant nutrient sources can be dangerous since Cr(VI) can be highly toxic to plants,animals,and humans.In order to explore soil conditions that lead to Cr(VI) generation,this study were performed using a Paleudult(Dystic Nitosol) from a region that has a high concentration of tannery operations in the Rio Grande do Sul State,southern Brazil.Three laboratory incubation experiments were carried out to examine the influences of soil moisture content and concentration of cobalt and organic matter additions on soil Cr(VI) formation and release and manganese(Mn) oxide reduction with a salt of chromium chloride(CrCl 3) and tannery sludge as inorganic and organic sources of Cr(III),respectively.The amount of Cr(III) oxidation depended on the concentration of easily reducible Mn oxides and the oxidation was more intense at the soil water contents in which Mn(III/IV) oxides were more stable.Soluble organic compounds in soil decreased Cr(VI) formation due to Cr(III) complexation.This mechanism also resulted in the decrease in the oxidation of Cr(III) due to the tannery sludge additions.Chromium(III) oxidation to Cr(VI) at the solid/solution interface involved the following mechanisms:the formation of a precursor complex on manganese(Mn) oxide surfaces,followed by electron transfer from Cr(III) to Mn(III or IV),the formation of a successor complex with Mn(II) and Cr(VI),and the breakdown of the successor complex and release of Mn(II) and Cr(VI) into the soil solution.  相似文献   

20.
The anion exchange behaviour of hydrous titanium oxide(HTO) has been exploited for the management of industrialwaste effluents contaminated with chromium(VI). Theadsorption of chromium(VI) by HTO (74.0–140.0 micron) in thepH range 0.5–8.0 has been studied. It is found that theadsorption of chromium(VI) by HTO is at a maximum in the pHrange 1.5–2.0. The interference of diverse foreign ionssuch as nitrate, chloride, sulfate, phosphate, calcium,magnesium, nickel, iron(III), barium etc. on the adsorptionof chromium(VI) by HTO at optimum pH has been investigatedby a batch-operation technique. Break-through capacity,adsorption and elution of chromium(VI) using HTO have beenstudied. It is found that HTO could be reused as anadsorbent for chromium(VI). Finally, chromium(VI) wasrecovered as insoluble chromate compound from waste effluentof Hindustan Motor Limited (HML) of Hooghly, West Bengal, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号