首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a view to the selection of plants for the re-vegetation of contaminated, semi-arid land, two populations of the perennial species Bituminaria bituminosa (Fabaceae) from the south of Spain were studied: one (“LA”) from a non-contaminated soil and the other (“C2”) from a similar soil having elevated total levels of Pb and Zn (1,112 and 4,249 μg g?1, respectively). For sand-cultured plants receiving nutrient solution, flow cytometry showed that heavy metals, at the concentrations measured in aqueous extracts from contaminated soils, had only slight genotoxic effects on root tip cell nuclei. Both populations were also grown in both soils, in two pot experiments. In the first, shoot biomass of LA and C2 in the contaminated soil was decreased to similar extents, with respect to the “clean” soil. Tissue heavy metal concentrations were unlikely to have been phytotoxic, except in the case of shoot Zn for population LA, but there were tissue deficiencies of P and K for populations LA and C2, respectively. In the second pot assay, the stimulation of growth by NPK fertiliser confirmed that even though this soil had high total heavy metal levels, nutrient availability was the principal factor limiting growth. The lesser transport of heavy metals (Cd, Mn and Zn) to the shoot by the population from the contaminated site is a factor that should be considered when selecting B. bituminosa lines for the phytostabilisation of such sites.  相似文献   

2.
A mesocosm experiment was established to evaluate the effect of two organic wastes: fermented sugar beet residue (SBR) and urban waste compost on the stimulation of plant growth, phytoaccumulation of heavy metals (HM) and soil biological quality and their possible use in phytostabilization tasks with native (Piptatherum miliaceum, Retama sphaerocarpa, Bituminaria bituminosa, Coronilla juncea and Anthyllis cytisoides) and non-native (Lolium perenne) plants in a heavy metal-contaminated semiarid soil. Except R. sphaerocarpa, SBR increased the contents of shoot N, P and K and shoot biomass of all plants. The percentage of mycorrhizal colonization was not affected by the organic amendments. The highest increase in dehydrogenase and β-glucosidase activities was recorded in SBR-amended P. miliaceum. SBR decreased toxic levels of HM in shoot of P. miliaceum, mainly decreasing Fe and Pb uptake to plants. This study pointed out that the SBR was the most effective amendment for enhancing the plant performance and for improving soil quality. The combination of SBR and P. miliaceum can be regarded the most effective strategy for being employed in phytostabilization projects of this contaminated site.  相似文献   

3.
Clean‐up of contaminated soils is a costly and slow process that requires long periods of time to be effective. Therefore, direct use of contaminated sites with appropriate management is often likely to be a more efficient use of such land. Consequently, the production of safe animal forages from contaminated soils was the aim of this research. Field studies were conducted to evaluate the growth and elemental composition of river saltbush (Atriplex amnicola) grown on a metal‐contaminated soil. The soil was amended with compost at rates of 0, 15 and 30 t/ha to assess its role on plant growth and metal uptake. Compost application significantly (< 0.05) increased biomass yield, crude protein (CP) and ash content of river saltbush; in contrast, it decreased the Zn and Pb concentrations in shoot tissues. When 30 t/ha of compost was added, the Pb concentrations in the stems and leaves decreased by 32 and 38%, respectively. Despite the large total and extractable content of metals in the studied soil, shoot concentrations of these metals in Aamnicola were always maintained below potentially toxic levels. The biomass material of A. amnicola had a high nutritive value compared to conventional forage crops and could safely be used as animal forage. This work demonstrates that an Atriplex spp, A. amnicola, has significant potential for use as a safe forage crop in the sustainable on‐site management of contaminated soils.  相似文献   

4.
Composts are increasingly used in land rehabilitation because they can improve soil quality and reduce the need for inorganic fertilizers. Their use contributes to an integrated approach to waste management by promoting recycling of nutrients and minimizing final disposal of organic residues that, due to their composition, can pose problems to agricultural soils. We investigated whether compost from mixed municipal solid waste (MSW) could be used to remediate two soils from a mine contaminated with trace elements. One of the soils was less acidic and had a greater content of Cu and Zn while the other had more Pb and a lower pH. The effect of MSW was evaluated by plant growth, trace element leachability, ecotoxicity of soil leachates, and biological and biochemical properties of soils. Growth of perennial ryegrass (Lolium perenne L. cv. Victorian) was stimulated in the MSW compost-amended soils compared with respective controls or with acidic soil when limed. After ryegrass had been growing for 119 days, the amount of water-extractable Zn was lower in MSW compost-amended soils, while the opposite was true for water-extractable Cu. Water-extractable Pb increased following MSW compost application to one soil and decreased in the other. The greatest dehydrogenase activity was obtained in amended limed soil, while the number of culturable bacteria and fungi and the activities of cellulase and β-glucosidase were similar in soil that was limed or following MSW compost application. In contrast, urease activity was repressed in limed or MSW compost-amended soils. Leachates from unamended soils were toxic towards Daphnia magna. Liming the very acidic soil led to a decrease in the toxicity of the leachate, but it was only in MSW compost-amended soils that ecotoxicity was no longer detected.  相似文献   

5.

Purpose

The presence of high concentrations of trace elements (TEs) in mine soils like those in the Sierra Minera of La Unión-Cartagena (SE Spain) limits the development of a vegetation cover on such sites, and pollution dispersion by water and wind erosion represents a serious risk for the surrounding ecosystems. The aim of this study was to evaluate different phytostabilisation procedures based on the co-culture of a legume (Bituminaria bituminosa) and a high-biomass (Piptatherum miliaceum) species for this type of soils.

Materials and methods

A pot experiment was carried out where B. bituminosa was tested as a soil pre-treatment strategy. Five different procedures were followed to study the growth stimulation or competition of both species in a contaminated soil from the Sierra Minera: (i) sowing of P. miliaceum without B. bituminosa (control treatment), (ii) sowing of P. miliaceum for co-cultivation of both species, (iii) sowing of P. miliaceum and co-cultivation of both species in soil with compost, (iv) harvesting and elimination of the aerial part of the plants before sowing of P. miliaceum and (v) harvesting and incorporation to the soil of the aerial part of B. bituminosa before sowing of P. miliaceum.

Results and discussion

The results showed that the co-culture of both species favoured the growth of P. miliaceum, whilst incorporating the aerial part of the legume to the soil increased nitrogen concentration in P. miliaceum but reduced its growth. The use of compost improved both the growth and N uptake of P. miliaceum and did not inhibit nodulation in B. bituminosa. TE extractability in the soils and accumulation in the plants were rather low and very little affected by the addition of the amendments or by co-culture of species.

Conclusions

Nitrogen availability plays an important role in P. miliaceum growth in TE-contaminated mine soils. The addition of compost together with legume cultivation is proposed as an effective combination for the cultivation of P. miliaceum in these soils, as both plant growth and soil conditions were improved following this procedure.
  相似文献   

6.
Lead immobilization was evaluated on soils spiked with increasingconcentrations of Pb (as Pb-acetate) using the following soilamendments: bentonite, zeolite, cyclonic ash, compost, lime,steelshot, and hydroxyapatite. The immobilization efficacy of theamendments was evaluated according to the following criteria:Ca(NO3)2-extractable Pb as an indicator of Pbphytoavailability, morphological and enzymatic parameters of beanplants (Phaseolus vulgaris) as indicator of phytotoxicity, and Pb concentration in edible tissue of lettuce (Lactuca sativa). The lowest reductions in Ca(NO3)2-extractablesoil Pb occurred when bentonite and steelshot were applied. Phytotoxicity from application of steelshot was confounded by toxic amounts of Fe and Mn released from the by-product which killed the lettuce seedlings. Addition of zeolite induced poorplant growth independent of Pb concentration due to its adverseeffect on soil structure. Substantial reductions in Ca(NO3)2-extractable Pb were observed when cyclonic ash, lime, compost and hydroxyapatite were applied. In general,these amendments reduced Pb phytotoxicity concomitant with reduced Pb concentration in lettuce tissue. Cyclonic ash, limeand compost further improved plant growth and reduced oxidativestress at low soil Pb concentrations due to soil pH increase mitigating Al or Mn toxicity.  相似文献   

7.
A laboratory study was performed to investigate the influence of soil texture (sandy loam vs. clay loam), Pb supply (as Pb(NO3)2 without or with compost) and Pb levels on the extraction of available Pb by diethylene triamine pentaacetic acid (DTPA) and its desorption patterns at ten shaking periods. The soils were polluted with five Pb levels without or with compost and incubated for 1 month. Kinetic models commonly used to study the release of the nutrients were used in this study. Results showed that Power function model described the pattern of Pb desorption better than other models. The amount of extracted Pb increased as the Pb levels increased and was found to be higher in sandy loam soil treated with Pb without compost than that of clay loam soil treated with Pb with compost. The a value (Pb desorption constant) was the highest in sandy loam soil amended with Pb without compost. The lowest value of a, however, was observed in clay loam soil amended with Pb with compost. The ab coefficient (initial desorption rate of Pb) was higher in sandy loam than clay loam soil, demonstrating higher initial release rates of Pb in the coarser-textured soil. Addition of Pb without compost resulted in a higher increase in ab value in comparison with Pb with compost, in both the soils.  相似文献   

8.
The distribution in soil and plant uptake of zinc (Zn) and lead (Pb) as influenced by pine bark-goat manure (PBG) compost additions were investigated from the soils artificially contaminated with Zn or Pb ions using maize (Zea mays L.) as a test crop. Soils were amended with four rates of pine bark-goat manure compost (0, 50, 100, and 200 tons ha?1) and four rates (0, 300, 600 and 1200 mg kg?1) of Zn or Pb. Maize was planted and grown for 42 days. At harvest, plants samples were analyzed for Zn and Pb concentration. Soils samples were analyzed for pH, extractable and diethylene triamine pentaacetic acid (DTPA) extractable Zn and Pb. Extractable Zn and Pb was lower in PBG compost amended soils than in unamended soils and steadily declined with increasing amount of compost applied. The extractable fraction for Zn dropped by 62.2, 65.0 and 44.6% for 300, 600 and 1200 mg Zn kg?1, respectively when 200 t ha?1 of PBG compost was applied. Metal uptake by maize plants were directly related to the rate of applied heavy metal ions with greater concentrations of metals ions found where metal ions were added to non-amended soils.  相似文献   

9.
A pot experiment was conducted to investigate the effect of chromium compost (0, 10, 30, and 50%) on the growth and the concentrations of some trace elements in lettuce (Lactuca sativa L.) and in the amended soils. Compost addition to the soil (up to 30%) increased dry matter yield (DMY); more than 30% decreased DMY slightly. The application of compost increased soil pH; nitric acid (HNO3)–extractable copper (Cu), chromium (Cr), lead (Pb), and zinc (Zn); and diethylenetriaminepentaacetic acid (DTPA)–, Mehlich 3 (M3)–, and ammonium acetate (AAc)–extractable soil Cr and Zn. The addition of Cr compost to the soil increased tissue Cr and Zn but did not alter tissue cadmium (Cd), Cu, iron (Fe), manganese (Mn), nickel (Ni), and Pb. The Cr content in the lettuce tissue reached 5.6 mg kg?1 in the 50% compost (326 mg kg?1) treatment, which is less than the toxic level in plants. Our results imply that compost with high Cr could be used safely as a soil conditioner to agricultural crops.  相似文献   

10.
The elevated presence of metal(loid)s in the environment significantly impacts ecosystems and human health and is generally largely due to industrial and mining activities. Thus, in the current study, we investigated and proposed an environmentally friendly method (phytomanagement) aimed at reducing the negative impacts associated with metal(loid) pollution through the use of soil amendments (biochar and compost) to permit Ailanthus altissima growth on a highly contaminated mining Technosol, with arsenic (As) and lead (Pb) contents of 539.06 and 11 453 mg kg-1, respectively. The objective was to examine the impacts of three biochars and compost on i) the physicochemical characteristics of soil, ii) metal(loid) immobilization in soil, and iii) A. altissima growth. We revealed that the application of biochar as a soil amendment improved soil conditions by increasing soil electrical conductivity, pH, and water-holding capacity. Moreover, concomitantly, we observed a large reduction (99%) in Pb mobility and availability following application of the hardwood biochar in combination with compost (HBCP). Thus, this combined soil amendment was most effective in promoting A. altissima growth. In addition, the HBCP treatment prevented As translocation in the upper parts of plants, although soil pore water As concentration was not diminished by amendment application.  相似文献   

11.
It is well known that lead (Pb) is strongly immobilized in soil by adsorption or precipitation. However, the reversibility of these reactions is poorly documented. In this study, the isotopically exchangeable Pb concentration in soils (E‐value) was measured using a stable isotope (208Pb). Soils were collected at three industrialized sites where historical Pb emissions have resulted in elevated Pb concentrations in the surrounding soil. Lead concentrations ranged from background values, in the control soils collected far from the emission source, to highly elevated concentrations (5460–14440 mg Pb kg?1). The control soil of each site was amended in the laboratory with Pb(NO3)2 to the same total Pb concentrations as the field‐contaminated soils. The %E values (E‐value relative to total Pb content) were greater than 84% in the laboratory‐amended soils, and ranged from 45% to 78% (mean 58%) in the field‐contaminated soils. The relatively large labile fractions of Pb in the field‐contaminated soils show that the majority of Pb is reversibly bound despite the fact that the binding strength is large. The Pb concentrations in soil solution were up to 3500‐fold larger for the laboratory‐amended soils than for field‐contaminated soils at corresponding total Pb concentrations. These differences cannot be explained by differences in labile fractions of Pb but are attributed to the decrease in soil solution pH upon addition of Pb2+‐salt.  相似文献   

12.
Green waste compost, peat, coir and wood bark were applied to metal-contaminated mine waste at the rates of 1%, 10% and 20% on dry weight basis, and perennial ryegrass grown over a period of 6 weeks. Addition of amendments led to increased biomass yield in all soils when compared with the non-amended soil. EDTA extractable Pb, Cu and Zn was significantly reduced in amended soil, while leaf and root metal concentrations were also significantly reduced by the application of amendments, especially at applied rates of 10% and 20%. Coir, green waste compost and wood bark stood out as amendments which were consistent in reducing soil extractable and plant tissue Pb, Cu and Zn; while peat rates above 10% enhanced solubility of Cu and Zn because of a lowering of the soil pH.  相似文献   

13.
Horticultural application of hydroabsorbent polymer (HP) has drawn research attention due to its perceived benefits to plant growth. Few studies have compared the use of compost and HP amendments on tree establishment in tropical urban environments. An experiment was conducted to assess the effect of compost (40% v v–1) and HP (3 and 5 kg m–3) on the growth of two native tree saplings (Calophyllum soulattri and Syzygium myrtifolium) in loamy and sandy soils. The HP treatments significantly affected soil pH and extractable phosphorus (P) and potassium (K), whereas combined application of compost and HP (5 kg m–3) resulted in significantly higher nitrogen (N) in both soil types. Plant diameter and height were significantly higher following HP application. This experiment demonstrates the efficacy of HP that can cater the plant requirements at the initial growth stages which are crucial for their successful establishment in tropic urban degraded soils.  相似文献   

14.
矿区土壤易发生重金属污染,是土地资源利用和维护的一大难题。以铜矿区污染土壤为研究对象,按质量比添加0,1%,2%,4%,10% (w/w)的生物炭,进行香根草室内盆栽试验。研究添加生物炭对土壤pH和微生物活性、香根草富集与转运重金属的影响,探明重金属形态含量与生物炭、微生物活性的相关性,旨在为生物炭与香根草联合修复矿区重金属污染土壤提供理论参考。结果表明:生物炭的添加能提高土壤pH,显著提高土壤FDA水解酶、蔗糖酶和脲酶活性,显著促进土壤基础呼吸,但对土壤微生物量碳无显著影响;生物炭的添加使香根草生物量显著增大,降低土壤Cu和Pb的有效态占比,Cd的变化与此相反;添加生物炭促进香根草对Cd和Pb的富集,降低香根草对Cu的富集,减少Cu、Cd和Pb在香根草体内的转运,因此香根草可作为Cu、Cd和Pb的稳定化植物。土壤蔗糖酶活性与香根草叶片Cu、Cd和Pb含量、有效态和残渣态Cu含量呈显著正相关,土壤基础呼吸与叶片Cu、Cd和Pb含量、有效态Cu、Pb含量呈显著负相关,而与有效态Cd含量呈显著正相关。总之,生物炭可减弱矿区土壤重金属对香根草生长的毒害作用,并促进香根草对重金属的富集,两者结合可改善铜矿区污染土壤的理化性质和微生物活性,有利于重金属污染土壤修复,改善土壤质量。  相似文献   

15.
《Applied soil ecology》2005,28(2):125-137
Microbial properties such as microbial biomass carbon (MBC), arylsulfatase, β-glucosidase and dehydrogenase activities, and microbial heterotrophic potential, together with several chemical properties such as pH, CaCl2 soluble heavy metal concentrations, total organic carbon and hydrosoluble carbon were measured to evaluate changes in soil quality, after “in situ” remediation of a heavy metal-contaminated soil from the Aznalcóllar mine accident (Southern Spain, 1998). The experiment was carried out using containers, filled with soil from the affected area. Four organic amendments (a municipal waste compost, a biosolid compost, a leonardite and a litter) and an inorganic amendment (sugarbeet lime) were mixed with the top soil at the rate of 100 Mg ha−1. Unamended soil was used as control. Agrostis stolonifera L. was sown in the containers. The soil was sampled twice: one month and six months after amendment application. In general, these amendments improved the soil chemical properties: soil pH, total organic carbon and hydrosoluble carbon increased in the amended soils, while soluble heavy metal concentrations diminished. At the same time, higher MBC, enzyme activities and maximum rate of glucose mineralization values were found in the organically amended soils. Plant cover was also important in restoring the soil chemical and microbial properties in all the soils, but mainly in those that were not amended organically. As a rule, remediation measures improved soil quality in the contaminated soils.  相似文献   

16.
Elements uptake, histological distributions as well as mycorrhizal and physiological statuses of Atriplex halimus were determined on trace metal and metalloid polluted soils from the surrounding spray zones of a former lead smelter in the South-East coast of Marseille (France). Analyses of heavy metal and arsenic distribution in soil and plant organs showed that A. halimus tolerance is largely due to exclusion mechanisms. No specific heavy metal concentration in leaf or root tissues was observed. However, accumulation of salts (NaCl, KCl, Mg and Ca salts) on leaf bladders and peripheral tissues of roots was observed and may compete with metal element absorption. Occurrence of endomycorrhizal structures was detected in roots and may contribute to lower element transfer from root into the aerial parts of plants. The non-destructive measurements of leaf epidermal chlorophylls, flavonols and phenols showed a healthy state of the A. halimus population on the metal and metalloid polluted sites. Considering the low metal bioaccumulation and translocation factors along with a reduced metal stress diagnosis, A. halimus appeared as a good candidate for phytostabilization of trace metals and metalloids and notably arsenic in contaminated soils of the Mediterranean spray zone. However, its invasive potential has to be determined before an intensive in situ use.  相似文献   

17.
Our contemporary society is struggling with soil degradation due to overuse and climate change. Pre‐Columbian people left behind sustainably fertile soils rich in organic matter and nutrients well known as terra preta (de Indio) by adding charred residues (biochar) together with organic and inorganic wastes such as excrements and household garbage being a model for sustainable agriculture today. This is the reason why new studies on biochar effects on ecosystem services rapidly emerge. Beneficial effects of biochar amendment on plant growth, soil nutrient content, and C storage were repeatedly observed although a number of negative effects were reported, too. In addition, there is no consensus on benefits of biochar when combined with fertilizers. Therefore, the objective of this study was to test whether biochar effects on soil quality and plant growth could be improved by addition of mineral and organic fertilizers. For this purpose, two growth periods of oat (Avena sativa L.) were studied under tropical conditions (26°C and 2600 mm annual rainfall) on an infertile sandy soil in the greenhouse in fivefold replication. Treatments comprised control (only water), mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), compost (5% by weight), biochar (5% by weight), and combinations of biochar (5% by weight) plus mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), and biochar (2.5% by weight) plus compost (2.5% by weight). Pure compost application showed highest yield during the two growth periods, followed by the biochar + compost mixture. biochar addition to mineral fertilizer significantly increased plant growth compared to mineral fertilizer alone. During the second growth period, plant yields were significantly smaller compared to the first growth period. biochar and compost additions significantly increased total organic C content during the two growth periods. Cation‐exchange capacity (CEC) could not be increased upon biochar addition while base saturation (BS) was significantly increased due to ash addition with biochar. On the other hand, compost addition significantly increased CEC. Biochar addition significantly increased soil pH but pH value was generally lower during the second growth period probably due to leaching of base cations. Biochar addition did not reduce ammonium, nitrate, and phosphate leaching during the experiment but it reduced nitrification. The overall plant growth and soil fertility decreased in the order compost > biochar + compost > mineral fertilizer + biochar > mineral fertilizer > control. Further experiments should optimize biochar–organic fertilizer systems.  相似文献   

18.
Ethnic vegetable crops are increasingly being grown in the United States and may accumulate heavy metals when grown on urban soils. This study evaluated accumulation of lead (Pb) and arsenic (As) in tissues of Malabar spinach (Basella alba L.) and sweet potato (Ipomoea batatas L.) grown on an urban and an orchard soil with Pb concentrations of 1,120 and 272 mg kg?1, respectively, and As concentrations of 6.92 and 90 mg kg?1, respectively. Tissue Pb was higher in both crops grown on both contaminated soils compared with an uncontaminated soil, while tissue As was higher on the orchard soil only. Malabar spinach did not accumulate Pb or As in its shoot, but concentrations of both metals were higher in sweet potato stems compared to leaves or tubers. Consumption of sweet potato stems should be avoided when sweet potato leaves are grown as a vegetable on soils with elevated levels of Pb and As.  相似文献   

19.
ABSTRACT

The application of soil amendments to immobilize heavy metals is a promising technology to meet the requirements for environmentally sound and cost-effective remediation. The present work was carried out to evaluate the effect of phosphogypsum (PG) used alone and in combination with compost (CP) at a mix ratio of 1:1 wet weight ratio (PG+CP) at 10 and 20 g dry weight kg?1 dry soil, on heavy metal immobilization in contaminated soil, and on canola growth (Brassica napus). The results were then compared with untreated soil (control). The results revealed that the Pb, Cd, and Zn uptake of canola plants was reduced by the application of PG alone and when it was mixed with CP. At an application rate of 10 g dry weight kg?1 dry soil of (PG+CP), the dry weight of canola plants increased by 66.8%, which was increased in comparison on its weight in the untreated soil (control). The addition of PG alone resulted in more pronounced immobilization of heavy metals as compared to PG mixed with CP. Plant growth was improved with CP addition but heavy metals immobilization was greatest in PG alone treatments. Results suggest that PG may be useful for the immobilization of heavy metals in contaminated soils.  相似文献   

20.
The legacy of industrialization has left many soils contaminated. However, soil organisms and plant communities can thrive in spite of metal contamination and, in some cases, metabolize and help in remediation. The responses of plants and soil organisms to contamination are mutually dependent and dynamic. Plant–soil feedbacks are central to the development of any terrestrial community; they are ongoing in both contaminated and healthy soils. However, the theory that governs plant–soil feedbacks in healthy soils needs to be studied in contaminated soils. In healthy soils, negative feedbacks (i.e. pathogens) play a central role in shaping plant community structure. However to our knowledge, the nature of feedback relationships has never been addressed in contaminated soils. Here we review literature that supports a plant–soil feedback approach to understanding the ecology of metal-contaminated soil. Further, we discuss the idea that within these soils, the role of positive as opposed to negative plant–soil feedbacks may be more important. Testing this idea in a rigorous way in any ecosystem is challenging, and metal contamination imposes an additional abiotic constraint. We discuss research goals and experimental approaches to study plant–soil interactions applicable to metal-contaminated soils; these insights can be extended to other contaminated environments and restoration efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号