首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. The problem of determining contact angles and surface energy of powders, such as soil particles, remains unsolved. So far, several theories and approaches have been proposed, but formulation of surface and interfacial free energy, as regards its components, is still a very debatable issue. In the present study, the general problem of the interpretation of contact angles and surface free energy on chemically heterogeneous and rough soil particle surfaces is evaluated by a reformulation of the Cassie‐Baxter equation, assuming that the particles are attached on to a plane and rigid surface. Compared with common approaches, our model considers a roughness factor that depends on the Young’s Law contact angle determined by the surface chemistry. Results of the model are discussed and compared with independent contact angle measurements using the Sessile Drop and the Wilhelmy Plate methods. Based on contact angle data, the critical surface tension of the grains were determined by the method proposed by Zisman. Experiments were made with glass beads and three soil materials ranging from sand to clay. Soil particles were coated with different loadings of dichlorodimethylsilane (DCDMS) to vary the wettability. Varying the solid surface tension using DCDMS treatments provided pure water‐wetting behaviours ranging from wettable to extremely hydrophobic, with contact angles > 150°. Results showed that the critical surface energy measured on grains with the highest DCDMS loadings was similar to the surface energy measured independently on ideal DCDMS‐coated smooth glass plates, except for the clay soil. Contact angles measured on plane surfaces were related to contact angles measured on rough grain surfaces using the new model based on the combined Cassie‐Baxter Wenzel equation, which takes into account the particle packing density on the sample surface.  相似文献   

2.
X. Y. WANG  Y. ZHAO  R. HORN 《土壤圈》2010,20(1):43-54
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.  相似文献   

3.
Appropriate management of sewage sludge is an important worldwide issue due to the still growing amount of wastewaters. In the study we examined to what extent the addition of dairy sewage sludge compared with mineral fertilization affects porosity, repellency index, and hydraulic conductivity of variously sized aggregates from two soil depths of Eutric Cambisol derived from loess: 5–15 cm and 25–35 cm. The repellency index was calculated as a ratio of ethanol and water sorptivity. Data on water and ethanol sorptivities of initially air‐dry soil aggregate fractions were obtained from steady state flow measurements using an infiltration device. Hydraulic conductivity was determined by measuring water infiltration at five pressure heads: –8, –6, –4, –2, and 0 cm of water column with the same device as for sorptivity determination. Addition of sewage sludge to the soil decreased the soil repellency index by an average of 27% in topsoil and 32% in subsoil for both aggregate sizes, respectively, and increased hydraulic conductivity about four times in both layers. Smaller aggregates (15–20 mm diameter) from soil amended with sewage sludge, in comparison with larger ones (30–35 mm diameter), had a higher repellency index by 36 and 24% in topsoil and subsoil, respectively. As for aggregates from soil with mineral fertilization, those differences were smaller and equal to 15% in subsoil, in topsoil smaller aggregates even had slightly lower repellency index (by 5%). Aggregates taken from the upper soil layer were more water repellent and had smaller hydraulic conductivity than those taken from subsoil, regardless of soil treatment and aggregate size.  相似文献   

4.
Recent research shows that most soils are more or less water repellent. Already subcritical water repellency may cause incomplete soil wetting and preferential flow. Both processes potentially reduce the residence time of water and solutes in the vadose zone, resulting in an enhanced risk of groundwater contamination. The objective of the present paper is, therefore, to evaluate the impact of reduced soil wettability on the soil water infiltration rate and to investigate the tendency towards preferential flow with the analysis of the immobile water content in the infiltration zone. In november 2002, a field experiment was done in a coniferous forest, 30 km N of Hannover, Germany. Soil hydrophobicity was quantified by measuring the contact angles. The hydraulic conductivity of the podsolic sandy soil was measured depth‐dependent with a double‐ring tension infiltrometer in three soil horizons. To quantify possible preferential‐flow effects, a LiBr‐Tracer was added to the infiltrating water to evaluate the mobile water‐content fraction after infiltration. Additionally, infiltration rates of water were compared with infiltration rates of ethanol which were determined after water infiltration at the same locations. Results show that the actual water repellency of field‐moist soil was mainly subcritical (contact angle <90°). Water infiltration rates were reduced due to subcritical repellency by a factor of 3–170 compared with ethanol infiltration rates (exclusion of wetting effects). This spatially variable infiltration behavior was not clearly reflected neither by the small‐scale contact‐angle measurements nor by the analysis of the average immobile soil water content in the infiltration zone. We conclude that this specific infiltration behavior of water caused by small‐scale wettability effects may temporarily reduce the local connectivity of water‐flow pathways.  相似文献   

5.
Wettability of soil affects a wide variety of processes in soils like infiltration, percolation, preferential flow, and surface runoff. Even though efforts have been made to determine contact angles and surface tension or energy of smooth surfaces, the determination on granular materials like soil particles remains unsolved. One objective of this study was to test the consistency of contact angles (CA) measured with the newly modified and easy‐to‐apply Wilhelmy plate method by using solid particles and liquids with defined variations of surface tension. A second objective was to derive basic physical surface properties for the irregularly shaped and chemically heterogeneous soil particles. Advancing contact angles were determined by using model soils varying in texture from clay to coarse sand to check the impact of grain size on the CA measurements. Varying the solid‐surface tension with dichlorodimethlylsilane treatments provided for pure‐water wetting stages ranging from wettable to extremely hydrophobic. The surface tensions of the liquids were varied from 72 mN m–1 to 25 mN m–1 by using water or water‐ethanol mixtures. The surface tensions of the model soils were determined with the zero degree–contact angle method following Zisman's critical–surface tension concept. Results show that the measured CA varied continuously with the variations of the surface tension of the liquid and the solid phase, respectively. A general interpretation of the results is possible by using the concept of the Equation of State Approach.  相似文献   

6.
Water repellency can reduce the infiltration capacity of soils over timescales similar to those of precipitation events. Compaction can also reduce infiltration capacity by decreasing soil hydraulic conductivity, but the effect of compaction on soil water repellency is unknown. This study explores the effect of compaction on the wettability of water repellent soil. Three air‐dry (water content ~4 g 100 g?1) silt loam samples of contrasting wettability (non‐repellent, strongly and severely water repellent) were homogenized and subjected to various pressures in the range 0–1570 kPa in an odeometer for 24 h. Following removal, sample surface water repellency was reassessed using the water drop penetration time method and surface roughness using white light interferometry. An increase in compaction pressure caused a significant reduction in soil surface water repellency, which in turn increases the soil's initial infiltration capacity. The difference in surface roughness of soils compacted at the lowest and highest pressures was significant (at P > 0.2) suggesting an increase in the contact area between sessile water drops and soil surfaces was providing increased opportunities for surface wetting mechanisms to proceed. This suggests that compaction of a water repellent soil may lead to an increased rate of surface wetting, which is a precursor to successful infiltration of water into bulk soil. Although there may be a reduction in soil conductivity upon compaction, the more rapid initiation of infiltration may, in some circumstances, lead to an overall increase in the proportion of rain or irrigation water infiltrating water repellent soil, rather than contributing to surface run‐off or evaporation.  相似文献   

7.
Water repellency can be a significant factor in soil physical behaviour, but little is known about the depth dependence of the contact angle of field soils. We investigated contact angles and wetting properties as a function of depth for a wide range of agricultural and forest soils in Germany. The agricultural soils ranged from silty to sandy texture (six profiles), and the forest soils ranged from sandy to loamy texture (eight profiles). Contact angles (CA) were measured with the Wilhelmy plate method (WPM). In most of the soils, advancing WPM contact angles were considerably greater than 0° and they varied irregularly with depth. In general, sandy soils had larger WPM contact angles than silty soils. From the relation of the contact angle with texture and pH the quality of soil organic matter (SOM) was considered as more important for the wetting properties than the total amount of soil organic carbon (SOC). Finally, it was found that for soils with intermediate sand contents either under agricultural or forest use, the kind of land use seemed not to influence CA. Coarse‐textured sandy soils that were used only as forest sites were more hydrophobic than silty soils which were exclusively used as agricultural soils. We conclude that a coarse texture favours, in combination with other factors (mainly pH), hydrophobic SOM.  相似文献   

8.
Water repellency is a relevant topic in soil‐science research due to its effects on vegetation growth, occurrence of surface runoff, infiltration, and erosion. Different methods have been adapted for the assessment of soil wettability by measuring the contact angle (CA), like the capillary‐rise method (CRM), where the liquid penetration dynamics into a dry sample is analyzed. However, questions related to sample preparation and the use of a suitable reference liquid in order to improve the reproducibility in such heterogeneous materials are still open. Different methods use ethanol as a reference liquid to quantify the degree of water repellency, like the molarity of ethanol droplets (MED), whereas other methods (CRM) suggest in addition n‐hexane as reference. To date, no generally accepted protocol has been invented to apply the CRM to soil particles. By using model porous materials with defined and stable levels of water repellency (silt, sand, and glass beads), CA results were compared for different initial settings of the sample. The main objective was to prove the CRM as a reliable and reproducible method to characterize soil wettability and to specify general guidelines for its application for granular materials in terms of sample size, sample‐packing procedure, and reference liquid. Results showed that a sample weight of ≈ 2 g has a relatively lower CA variation between replications. The packing procedure showed erratic results in CA, proving to be a critical factor in reproducibility. A uniform criterion of samples packing is recommended regarding application of CRM in soils. Regarding the reference liquid, n‐hexane should be preferred instead of ethanol for dynamic CA determination, because ethanol increased the tendency of CRM to overestimate angles due to dynamic effects, especially in finer‐textured materials (i.e., silt).  相似文献   

9.
We describe the use of a capillary rise method to measure the wettability of 10 samples of agricultural soil from Rothamsted long-term experimental sites. The samples have very similar clay contents, but organic carbon (C) contents range from 11.5 to 31.2 g kg−1. Their wetting rates were interpreted by an improved method of data analysis, consistent with the Washburn equation, and showed an increase in the effective contact angle between the water meniscus and the soil with increasing C content. This corresponds to a decrease in wettability with increasing C content, and accords with other results reported in the literature. By contrast with water, we found that capillary rise for n -hexane into soil did not depend on the soil's bulk density or C content. A priori calculations of the expected wetting rates from fluid properties and an effective hydraulic radius estimated by other methods gave magnitudes and trends that agreed with our experimental data. The results show that estimates of effective hydraulic radius can provide a useful approximation for characterizing soil wetting, but that further modelling should be carried out.  相似文献   

10.
The organic matter (OM) in biopore walls and aggregate coatings may be important for sorption of reactive solutes and water as well as for solute mass exchange between the soil matrix and the preferential flow (PF) domains in structured soil. Structural surfaces are coated by illuvial clay‐organic material and by OM of different origin, e.g., earthworm casts and root residues. The objectives were to verify the effect of OM on wettability and infiltration of intact structural surfaces in clay‐illuvial horizons (Bt) of Luvisols and to investigate the relevance of the mm‐scale distribution of OM composition on the water and solute transfer. Intact aggregate surfaces and biopore walls were prepared from Bt horizons of Luvisols developed from Loess and glacial till. The mm‐scale spatial distribution of OM composition was scanned using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The ratio between alkyl and carboxyl functional groups in OM was used as potential wettability index (PWI) of the OM. The infiltration dynamics of water and ethanol droplets were determined measuring contact angles (CA) and water drop penetration times (WDPT). At intact surfaces of earthworm burrows and coated cracks of the Loess‐Bt, the potential wettability of the OM was significantly reduced compared to the uncoated matrix. These data corresponded to increased WDPT, indicating a mm‐scaled sub‐critical water repellency. The relation was highly linear for earthworm burrows and crack coatings from the Loess‐Bt with WDPT > 2.5 s. Other surfaces of the Loess‐Bt and most surfaces of the till‐derived Bt were not found to be repellent. At these surfaces, no relations between the potential wettability of the OM and the actual wettability of the surface were found. The results suggest that water absorption at intact surface structures, i.e., mass exchange between PF paths and soil matrix, can be locally affected by a mm‐scale OM distribution if OM is of increased content and is enriched in alkyl functional groups. For such surfaces, the relation between potential and actual wettability provides the possibility to evaluate the mm‐scale spatial distribution of wettability and sorption and mass exchange from DRIFT spectroscopic scanning.  相似文献   

11.
This study is an attempt to establish an evaluation method of water repellency of soil ranging complete wettability to complete nonwettability. The principal used was the theory of capillary rise.

The samples were packed into teflon tubes which are verv hydrophobic and placed at a certain depth in water. In this method, the height of capillary rise of very nonwettable sample would remain under the free water level even for an infinite lime. On the other hand, the letting front of the wettable samples would be above the free water level for an infinite lime. This method is considered to he suitable for both writable and nonwettable samples. It was found that not onlv writable samples but also nonwettable samples changed to be completely lettable bv healing at 250 C, and also thai this change was particularly remarkable in the case of humic acid.

From the ratio of the maximum height of capillary rise of the sample heated at 105°C to that 250 C, the sample heated at 250 C, the water repellency of the soil sample can be represented as contact angle, whether the sample is very wettable of nonwettable.  相似文献   

12.
Soil microbes produce exudates which upon drying become water-repellent, thus altering hydraulic properties. The influence of microbial activity caused by adding plant nutrients on the hydraulic characteristics of soil aggregates is reported. Soil aggregates were collected from a field that had been fertilized with different amounts of nitrogen. Aggregates were also incubated with different nutrient treatments in the laboratory. Their sorptivity, hydraulic conductivity and water repellency were measured with a new device. Adding nitrogen was found to decrease sorptivity and hydraulic conductivity because of increased water repellency in the field. In the laboratory studies, the addition of nutrients caused severe water repellency in the soil aggregates. Respiration studies identified a large increase in biological activity following nutrient amendment which produces water-repellent materials.  相似文献   

13.
Water repellency of volcanic ash soils from the Ecuadorian páramo was studied by a combination of extraction and analysis of water‐repellent products, Molarity Ethanol Droplet values, water contact‐angle measurements by capillary rise, and N2 adsorption isotherms. The undried samples studied are hydrophilic, but exhibit water repellency after moderate drying (48 hours at 30°C). The advancing water contact‐angle measured by capillary rise varies from 78° to 89°. These water contact‐angles decrease strongly after extraction of organic materials by an isopropanol–water mixture. Elemental analysis, infrared spectra and gas chromatography‐mass spectrometry analyses were used to characterize the extracts. The results show that long‐chain fatty acids and more complex non‐polar alkyl components (waxes) are the main water‐repellent materials. The deposition of such extracted materials onto hydrophilic sand leads to the rapid increase of water contact‐angle until values close to those measured on the soil samples are achieved. Assuming a coating of the mineral surface by organic hydrophobic products and using Cassie's law, the water contact‐angle of extracted materials was computed. The values ranged from 100° to 157°. Nitrogen specific surface areas of the soils studied were very small, indicating a low adsorbent–adsorbate interaction on hydrophobic surfaces. These results partially validate the hypothesis of water‐repellent materials that occur as coatings at least after a drying process.  相似文献   

14.
Knowledge of soil water repellency distribution, of factors affecting its occurrence and of its hydrological effects stems primarily from regions with a distinct dry season, whereas comparatively little is known about its occurrence in humid temperate regions such as typified by the UK. To address this research gap, we have examined: (i) water repellency persistence (determined by the water drop penetration time method, WDPT) and degree (determined by the critical surface tension method, CST) for soil samples (0–5, 10–15 and 20–25 cm depth) taken from 41 common soil and land‐use types in the humid temperate climate of the UK; (ii) the supposed relationship of soil moisture, textural composition and organic matter content with sample repellency; and (iii) the bulk wetting behaviour of undisturbed surface core samples (0–5 cm depth) over a period of up to 1 week. Repellency was found in surface samples of all major soil textural types amongst most permanently vegetated sites, whereas tilled sites were virtually unaffected. Repellency levels reached those of the most severely affected areas elsewhere in the world, decreased in persistence and degree with depth and showed no consistent relationship with soil textural characteristics, organic matter or soil moisture contents, except that above a water content of c. 28% by volume, repellency was absent. Wetting rate assessments of 100 cm3 intact soil cores using continuous water contact (–20 mm pressure head) over a period of up to 7 days showed that across the whole sample range and irrespective of texture, severe to extreme repellency persistence consistently reduced the maximum water content at any given time to well below that of wettable soils. For slightly to moderately repellent soils the results were more variable and thus hydrological effects of such repellency levels are more difficult to predict. The results imply that: (i) repellency is common for many land‐use types with permanent vegetation cover in humid temperate climates irrespective of soil texture; (ii) supposedly influential parameters (texture, organic matter, specific water content) are poor general predictors of water repellency, whereas land use and the moisture content below which repellency can occur seem more reliable; and (iii) infiltration and water storage capacity of very repellent soils are considerably less than for comparable wettable soils.  相似文献   

15.
Using an in vitro bioreactor system in which the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown in a soil devoid of detectable living microbes, we could show that the mycelium of this fungus contributed to the maintenance of water-stable soil aggregates and increased soil water repellency, as measured by water drop penetration time. This is to our knowledge the first demonstration of a causal link between AM fungal growth and water repellency of soil aggregates. Our results also place AM fungal contributions to soil aggregation on a firm mechanistic footing by showing that hyphae are sufficient to produce effects, in the absence of other soil biota, which have always been included in previous studies.  相似文献   

16.
Long‐term capillary rise experiments (0 to about 89 000 hour) were performed at 19°C on homogenized and heat‐treated podsolic forest top‐ and subsoil samples. These were packed into columns, the bases of which were then partially immersed, at constant depth, in water reservoirs to simulate a constant water table. Selected columns were equipped with tensiometer and TDR probes. Other columns were removed at prescribed times and divided into 2‐cm horizontal segments whose volumetric water contents were determined. The degree of saturation was then estimated by comparison with the capillary rise in duplicate arrangements of samples immersed in ethanol. It was found that the heat treatments conferred increased water repellency (WR) on the soil, which increased with temperature (significantly so at greater than 60°C). This had a profound effect on the capillary rise characteristics and development of water content in the soil behind the wetting front, indicating an effective, albeit slow, reduction in effective WR. This has implications for hydraulic modelling of soils with significant WR and demonstrates that sub‐surface WR exerts a significant influence on capillary rise from a water table and suggests that commonly used indicators of surface WR using droplet tests may not be useful for such modelling purposes.  相似文献   

17.
The protective impact of aggregation on microbial degradation through separation has been described frequently, especially for biotically formed aggregates. However, to date little information exists on the effects of organic‐matter (OM) quantity and OM quality on physical protection, i.e., reduced degradability by microorganisms caused by physical factors. In the present paper, we hypothesize that soil wettability, which is significantly influenced by OM, may act as a key factor for OM stabilization as it controls the microbial accessibility for water, nutrients, and oxygen in three‐phase systems like soil. Based on this hypothesis, the first objective is to evaluate new findings on the organization of organo‐mineral complexes at the nanoscale as one of the processes creating water‐repellent coatings on mineral surfaces. The second objective is to quantify the degree of alteration of coated surfaces with regard to water repellence. We introduce a recently developed trial that combines FTIR spectra with contact‐angle data as the link between chemical composition of OM and the physical wetting behavior of soil particles. In addition to characterizing the wetting properties of OM coatings, we discuss the implications of water‐repellent surfaces for different physical protection mechanisms of OM. For typical minerals, the OM loading on mineral surfaces is patchy, whereas OM forms nanoscaled micro‐aggregates together with metal oxides and hydroxides and with layered clay minerals. Such small aggregates may efficiently stabilize OM against microbial decomposition. However, despite the patchy structure of OM coating, we observed a relation between the chemical composition of OM and wettability. A higher hydrophobicity of the OM appears to stabilize the organic C in soil, either caused by a specific reduced biodegradability of OM or indirectly caused by increased aggregate stability. In partly saturated nonaggregated soil, the specific distribution of the pore water appears to further affect the mineralization of OM as a function of wettability. We conclude that the wettability of OM, quantified by the contact angle, links the chemical structure of OM with a bundle of physical soil properties and that reduced wettability results in the stabilization of OM in soils.  相似文献   

18.
Fly ash‐enriched soils occur widely throughout the industrial regions of eastern Germany and in other heavily industrialized areas. A limited amount of research has suggested that fly ash enrichment alters the water repellency (WR) characteristics of soil. This study concentrates on the influence of fly ash enrichment on WR of forest soils with a focus on forest floor horizons (FFHs). The soils were a Technosol developed from pure lignite fly ash, FFHs with lignite fly ash, and FFHs without lignite fly ash enrichment. Three different methods (water drop penetration time, WDPT, test; water and ethanol sorptivity measurement and the derived contact angle, θR; and the Wilhelmy‐plate method contact angle, θwpm) were used to characterize soil WR. Additionally, carbon composition was determined using 13C‐NMR spectra to interpret the influence of the organic matter. This study showed that the actual WR characteristics of undisturbed, fly ash‐enriched soils can be explained in terms of the composition of soil organic matter, with the fly ash content playing only a minimal role. Regardless of the huge amounts of mainly mineral fly ash enrichment, all undisturbed FFHs were comparable in their WR characteristics and their carbon compositions, which were dominated by recently‐formed organic substances. The pure fly ash deposit was strongly influenced by lignite remains, with the topsoil having a greater content of recent plant residues. Thus, the undisturbed topsoil was more repellent than the subsoil. When homogenized samples were used, we found a distinct effect of fly ash enrichment and structure on WR. Water repellency of the pure fly ash horizons did not differ distinctly, while the fly ash enrichment in the FFHs caused a significant reduction in WR. The methods used (WDPT, θR and θwpm) identified these differences similarly. These results led to the assumption that water‐repellent structures of the topsoils were probably the result of hydrophobic coatings of recently formed organic substances, whereby the initially high wettability of the mainly mineral, hydrophilic fly ash particles was reduced.  相似文献   

19.
《Soil & Tillage Research》2005,80(1-2):69-78
A method for determining maximum–minimum values of the soil aggregates stability index (ASI) is presented. This allows for the calculation of the range of variations of the soil aggregates stability index for destructive changes of soil aggregation and for assuming criterion of the soil aggregation stability evaluation. The data used for the calculations are distributions of soil aggregate frequencies before and after destruction. On the base of the ASI, determined for the tested soil and the range of its possible variations, other indices that characterise the relative nature of aggregate variations have been defined. The presented methodology for the analysis of the soil aggregation stability index has been illustrated for three soils and various methods of water stability determination.  相似文献   

20.
A field study was conducted in order to study the effects of different wildfire severities on [1] soil organic matter content, [2] soil water repellency, and [3] aggregate stability; [4] the distribution of soil water repellency in aggregate sieve fractions (1–2, 0.5–1, 0.25–0.5 and < 0.25 mm) was also studied. Five similar burned sites and two long-unburned control sites were selected under mixed fir and pine forests in volcanic highlands from Michoacán, Mexico. Soil water repellency was observed in soil samples from all sites, although changes were influenced by fire severity. Sites affected by low severity fires did not show important changes in burned soils in comparison with controls, while high severity fires caused different responses: water repellency was increased or destroyed probably due to temperatures below or above 200–250 °C during burning. The degree of wettability/repellency from the fine earth fraction of burned soils seems to be conditioned by < 0.5 mm aggregates, more than coarser aggregates which always showed a higher degree of wettability. It is suggested that destruction of organic matter during burning occurs principally in coarse aggregates, where combustion can be more intense. Aggregate stability (measured using pre-wetted aggregates between 4 and 4.8 mm) did not change under low severity burning but it was considerably reduced in the case of a high fire severity. Losses of organic matter and destruction of water repellency seem to be the reasons for that reduction in this type of soil in contrast to previous studies, where aggregate stability increased after burning. Changes in both properties (water repellency and aggregate stability) are expected to induce modifications in runoff and soil loss rates at the hillslope scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号