首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Although the application of manure to upland fields is believed to induce changes in the quality of humic substances in soil as well as the quantity, the direction and extent of these changes have not been elucidated. To understand temporal variations in humic acids, periodically collected soil samples from two fields, a Typic Hapludult (Togo) and a Pachic Melanudand (Kuriyagawa), with cattle manure and chemical fertilizer (CF) were examined. The content and degree of humification (darkening) of the humic acids were distinctly greater in Kuriyagawa than in Togo soil. Corresponding to the difference in the degree of humification, molecular size distribution, elemental composition, infrared (IR) spectra, and 13C cross polarization/magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectra of humic acids differed between the two soils. Manure application at 40 Mg ha?1 year?1 for 16 years (Togo) and at 80 or 160 Mg ha?1 year?1 for 19 years (Kuriyagawa) resulted in greater humic acid content compared with plots with CF only because of its increase in the manured plots and/or decrease in the CF plots. Manure application at an extremely high rate (160 Mg ha?1 year?1) resulted in higher H content and greater signal intensities of alkyl C, O-alkyl C and amide C=O in the 13C CPMAS NMR and/or IR spectra. Although humic acids with larger molecule sizes increased in all the manured plots, differences between the humic acids from the plots with and without manure applied at practical levels in the elemental and spectroscopic analyses were small or scarce. These results were considered to be because of the similarity between the indigenous soil humic acids and the manure-derived ones in Togo soil (a low degree of humification) and because of the abundance of highly-humified humic acids in Kuriyagawa soil.  相似文献   

2.
To understand the effect of land use changes on the composition of humus in tropical soils, samples from land under primary forest, secondary forest, coffee plantation, and arable crops were investigated at three sites in south Sumatra, Indonesia. Total carbon and total nitrogen contents were 1.7 to 4.3 times and 1.1 to 2.8 times greater in the topsoil under primary forest than under the other types of land use. Following change from primary forest to other uses, the proportion of humic acids in the organic matter of the topsoils decreased while that of the fulvic acid fraction increased. Within the range of land uses, differences in the yields of humic acids and fulvic acid fractions were, respectively, larger and smaller than those in total carbon content. The humic acids were classified into the low and middle classes in the degree of humification. Absorption due to the green fraction of humic acids, Pg, was detected in the UV‐visible spectra of almost all the humic acids. No relation was observed between the degree of humification of humic acids or the strength of Pg absorption in their spectra and land use change. The fulvic acid fractions were fractionated on insoluble polyvinylpyrrolidone (PVP) into the adsorbed fractions consisting of humic substances and the non‐adsorbed fractions consisting of non‐humic substances. A positive correlation between the amount of the fulvic acid fraction and the percentage of the PVP‐adsorbed fraction within it indicated that the variation in the amount of the fulvic acid fraction was attributable to acid‐soluble humic substances. The ionization difference spectra of solutions between pH 12 and pH 7 suggested that the chemical structures of the PVP‐adsorbed fulvic acids have been altered by land use change.  相似文献   

3.
We evaluated the effect of soil conservation by weeds on the degradation and generation of humic acids, fulvic acids, and water‐soluble non‐humic substances (WS‐NHS) in a red‐acid soil (Vertic Dystrudept) (Indonesia) from the changes in humus composition and stable carbon isotopic ratio (δ13C). Three plots, a weeded plot (T‐1; the common practice), a plot covered with Paspalum conjugatum Berg., a C4 plant (T‐2), and a plot in which native weeds were allowed to grow (T‐3), were prepared. An incubation experiment determined the δ13C values of the humus fractions generated from Paspalum in soil. Based on the increase in δ13C value, the proportion of total C that originated from Paspalum C after 4 years under coffee was 16 ± 4% in the T‐2 topsoil (0–10 cm). Humic and fulvic acids in the T‐1 topsoil decreased to 46 and 84%, respectively, whilst both increased or remained constant in the T‐2 and T‐3 soils. The WS‐NHS content varied little and was independent of land management. The preferential loss of the humic acids with a smaller degree of humification as assessed by their darkness in colour was shown in T‐1. The decrease in the degree of humification suggested the accumulation of the weed‐derived humic acids in T‐2 and T‐3. In the T‐2 topsoil, 36 ± 2%, 13 ± 3% and 15 ± 2% of C in the humic acids, fulvic acids and WS‐NHS, respectively, were estimated to be Paspalum‐derived after 4 years. The estimated initial C loss during the same period was 17 ± 3%, 14 ± 2% and 7 ± 2%, respectively, for those fractions, which suggests the fastest turnover rate for the humic acids and significant retardation of their degradation in soil colonized by weeds.  相似文献   

4.
To investigate the chemical heterogeneity of humic substances in relation to molecular size, fulvic and humic acids were extracted and purified from the surface horizon of a Humic Gleysol in northern Switzerland. A fractionation scheme using hollow‐fibre ultrafiltration cartridges was developed and used to obtain four size fractions of the humic acid with nominal molecular weight ranges > 300 kDa, 100–300 kDa, 30–100 kDa, and 10–30 kDa. The fulvic acid and all humic acid fractions were characterized by size exclusion chromatography, elemental analysis (C, H, N, S), as well as spectroscopic techniques including UV‐VIS, CP‐MAS 13C‐NMR, FT‐IR, and fluorescence spectroscopy. Clear chemical differences between the humic acid size fractions were observed. Smaller size fractions of the soil humic acid contained more chargeable functional groups and a larger percentage of aromatic carbon than the larger size fractions. Conversely, the percentage of aliphatic carbon increased with increasing apparent molecular weight. The chemical composition of the smallest humic acid fraction differed clearly from the fulvic acid fraction, despite similar apparent molecular size and carboxyl carbon content. Small humic acids contained much more aromatic carbon and less aliphatic carbon than the fulvic acid fraction. Apparently, humic size fractions differ in their chemical composition, which can have important implications for their environmental behaviour.  相似文献   

5.
In the previous paper (1), liming an acid humus volcanic ash soil resulted in the formation of humic acids combined with calcium, but had no significant effect on acid brown forest soils containing humic acids of a lower degree of humification. Subsequently, the authors examined the humus composition of the soils treated with calcium acetate, and conducted some experiments on the combination reaction between humic acid and calcium ions. The results obtained are presented in this paper.  相似文献   

6.
We studied the acid‐base properties of 16 fulvic acids and 16 humic acids isolated from the surface (3–15 cm) and subsurface (> 45 cm) horizons of two types of acid forest soils, derived respectively from amphibolite and granite rocks, under five different types of vegetation. The observed differences between the contents of humic substances in the two types of soils were related to the degree of Al‐saturation of the soil organic matter, as indicated by the molar ratio between pyrophosphate extractable Al and C. Humic fractions were characterized in terms of elemental composition, and CPMAS 13C NMR spectrometry. The contents of carboxylic and phenolic groups were estimated by potentiometric titrations conducted in 0.1 m KNO3 in a nitrogen atmosphere. The fulvic acids contained more carboxylic groups but less phenolic groups than the humic acids: the ratio of phenolic to carboxylic groups in the humic acids was 0.48 ± 0.10 and in the fulvic acids 0.23 ± 0.05. The mean values of the protonation constants of each of the humic substance fractions can be used as generic parameters for describing the proton binding properties. The fulvic acids isolated from the subsurface horizon of the soil contained between 2.6 and 23% more carboxylic groups, and the humic acids between 8 and 43% more carboxylic groups than those isolated from the surface horizon of the same soil.  相似文献   

7.
Humic acids from polar soils—cryozems (Cryosols), gleyezems (Gleysols), and peat soils (Histosols)—have been studied by electron paramagnetic resonance spectroscopy. First information was acquired on the content of free radicals in humic acids from polar soils for the northern regions of Western Siberia (Gydan Peninsula, Belyi Island). It was found that polar soils are characterized by higher contents of free radicals than other zonal soils. This is related to the lower degree of humification of organic matter and the enhanced hydromorphism under continuous permafrost conditions. The low degree of organic matter humification in the cryolithozone was confirmed by the increased content of free radicals as determined by electron paramagnetic resonance, which indicates a low biothermodynamic stability of organic matter.  相似文献   

8.
Microbial communities are responsible for soil organic matter cycling and thus for maintaining soil fertility. A typical Orthic Luvisol was freed from organic carbon by thermal destruction at 600°C. Then the degradation and humification of 14C‐labelled maize straw by defined microbial communities was analysed. To study the role of microbial diversity on the humification of plant material, microcosms containing sterilized soil were inoculated with a natural microbial community or with microbial consortia consisting of bacterial and fungal soil isolates. Within 6 weeks, 41 ± 4% of applied 14C‐labelled maize straw was mineralized in the soil microcosms containing complex communities derived from a soil suspension, whilst the most efficient communities composed of soil isolates mineralized less than 35%. The humification products were analysed by solution state 13C‐NMR‐spectroscopy and gel permeation chromatography (GPC). The analyses of humic acids extracts by solution state 13C‐NMR‐spectroscopy revealed no difference in the development of typical chemical functional groups for humic substances during incubation. However, the increase in specific molecular size fractions of the extracted humic acids occurred only after inoculation with complex communities, but not with defined isolates. While it seems to be true that redundancy in soil microbial communities contributes to the resilience of soils, specific soil functions may no longer be performed if a microbial community is harshly affected in its diversity or growth conditions.  相似文献   

9.

Purpose

To assess how the rates of humus formation and humification are affected by land use and age of ecosystems, this study investigated soil development in two post-mining chronosequences (spoil heaps formed from open-cast coal mining near Sokolov, Czech Republic). The following characteristics were measured: content, composition, and properties of humic acids; organic carbon (C) and total nitrogen (N) contents; pH; and amorphous iron content.

Materials and methods

Two chronosequences were studied. One consisted of unreclaimed spontaneously revegetated spoils (3, 12, 20, and 40 years old). The other consisted of heaps that were reclaimed by planting alder in graded heaps (7, 15, 20, 30, and 40 years old). Humus and iron contents as well as pH were determined, and humic acids were extracted for detailed chemical analyses (C, H, N, 13C-NMR, and pyrolysis mass-spectrometry).

Results and discussion

C and N accumulated faster in the reclaimed sites than in the unreclaimed sites; organic matter accumulation results in the decrease of pH in all soils and in spontaneous sites also increase of amorphous iron content. Humic acids (HA) and fulvic acids (FA) increased with the site age in both chronosequences. The CHA/CFA was higher in the reclaimed soils than in the unreclaimed soils, and the CHA/CFA ratio increased with age in the unreclaimed soils. Humic acid aromaticity was higher in the reclaimed site than in the unreclaimed sites but increased with the age of unreclaimed sites. H and O content decreased with age of reclaimed soils. Humification led to an increase in HA caloricity in the reclaimed sites but not in unreclaimed sites because of the influence of residual wax-type substances in the unreclaimed sites. Degree of HA oxidation (ω) for the reclaimed plots was similar to that in typical zonal soils but was highly variable in unreclaimed soils.

Conclusions

Relative to spontaneous revegetation in the unreclaimed sites, reclamation increased the rates of humus accumulation, humification, and humus acid transformations. The differences between reclaimed and unreclaimed sites, however, decreased with site age and were very small in 40-year-old sites. These differences correspond to the rapid colonization of the reclaimed sites and the slow colonization of the unreclaimed sites by soil biota.  相似文献   

10.
Abstract

Soil organic matter and its chemical fractions have a profound impact on soil chemical and physical properties. In turn, the effect of management (cropping and tillage) on the quantity and chemical properties of soil organic matter can be substantial. The objective of this study was to compare the effects of specific tillage regimes and crop sequences commonly used in the central Great Plains of the United States on the quantity, quality, and distribution with depth of soil organic carbon (SOC). Soils were sampled in 1 cm or 2 cm increments to a depth of 10 cm from experimental field plots on a Sharpsburg silty clay loam (fine, montmorillonitic, mesic Typic Argiudoll). The plots had been under 6 continuous tillage regimes since 1978 and cropped to continuous corn, continuous soybean, or corn‐soybean in rotation since 1985. Soils were analyzed for total SOC, fulvic acid (FA) carbon, and humic acid (HA) carbon. No‐till and continuous corn (Zea mays L.) management generally had the highest SOC, with a sharp reduction in SOC below 2 cm. Only no‐till increased FA, which also decreased with depth, especially between 2 and 4 cm. Humic acid concentration was highest under continuous corn but was unaffected by tillage. Humic acid also was highest in the 1‐ to 2‐cm increment of continuous corn. Two ratios which are used as indices of degree of humification, HA/FA and (HA+FA)/SOC, gave different estimates of the effect of management. Only continuous com increased HA/FA, suggesting increased humification. No treatment affected (HA+FA)/SOC. Overall, continuous corn and no‐till contributed the greatest amounts of residue and maintained a soil environment conducive to preserving the resulting organic matter. These management options increase not only total SOC, but also alter the quality of that SOC as measured by HA and FA. These changes in SOC characteristics may have implications for long‐term soil quality and soil productivity.  相似文献   

11.
Humic acids were isolated from nine topsoils in New Zealand tussock grasslands. Cross-polarization 13C NMR spectra of solid samples were used to estimate fractions of carbon contained in different types of chemical functional groups. The degree of oxygen substitution of aromatic rings showed a strong negative correlation with soil development. Aromaticities greater than 0.25 were found in humic acids from only the two least-developed soils.  相似文献   

12.
有机物料对白土土壤胡敏酸结构特征的影响   总被引:7,自引:0,他引:7  
【目的】研究有机物料施入对白土土壤的腐殖质含量组成和胡敏酸(HA)结构特征的影响,为明确不同腐殖质组分对土壤肥力的影响提供理论依据。【方法】供试土壤为江苏省溧阳市南渡镇"白土改良大田示范试验核心区"的南方中低产水稻土(白土)。试验设秸秆还田(ST)、施有机肥(OM)和对照(CK,不施有机物)3个处理,培肥3年。同时采集试验田周围相邻的江苏省耕地质量监测点(2007~2013年)的每年施化肥(LAF)和长期不施肥(NF)的两种处理土壤进行比对研究。分别测定土壤的基本理化性质及其腐殖质含量的组成,并提取土壤胡敏酸(HA)固体样品利用红外光谱和元素分析来进行结构表征。【结果】秸秆还田和施有机肥处理的有机碳、全氮含量明显高于对照;与对照相比,施有机物料土壤HA的E4/E6比值增加,且秸秆还田施有机肥对照。红外光谱显示,试验区域和耕地监测点的不同处理土壤HA均在1650 cm-1处(酰胺I带)和1550 cm-1处(1500~1580 cm-1酰胺II带伸缩振动)有特征吸收。施有机肥和秸秆还田处理土壤HA的2920/1720、2920/1650比值显著大于对照。在元素组成上,OM、ST处理的土壤腐殖质(HA)中C、H、N的含量比均高于CK,相对长期施化肥(LAF)和不施肥(NF)的土壤有明显提高,而氧元素的含量呈降低的趋势;OM和ST处理土壤HA的[H]/[C]和[O]/[C]原子数比均低于CK;与LAF和NF处理相比,试验区域各处理土壤腐殖质的[H]/[C]和[O]/[C]原子数比均有明显降低。【结论】有机物料施入土壤后可增加土壤有机碳含量,改善土壤理化性质,提高作物产量和品质,且施入土壤的有机物料可转化为新的腐殖质,降低土壤的腐殖化程度。土壤腐殖质(HA)的红外光谱分析说明,白土土壤HA具有明显的酰胺类化合物特征。有机物料施入后使得土壤脂族性增强,羧基量减少,芳香度降低;秸秆还田和施有机肥处理与对照相比,土壤HA的[H]/[C]和[O]/[C]比均有下降的趋势,且HA的氮素含量明显增加,这显示有机物料施入后白土土壤腐殖质发生"脱水"过程,同时也反映了白土土壤腐殖质形成的特征。  相似文献   

13.
水稻土的腐殖质组成   总被引:2,自引:0,他引:2  
彭福泉  吴介华 《土壤学报》1965,13(2):208-215
土壤的有机质状况与成土条件之间有着紧密的联系。借助于腐殖质形成分析法,ТюРин确定了腐殖质形成过程的地带性规律。他指出,不同发生学土类,其腐殖质形成有着明显的不同[1]。Кононова把土壤腐殖质看作为一个高分子物质体系,她证明成土条件对腐殖质的影响,不仅表现在分祖形成方面,而且也表现在胡敏酸的本性方面[2]。另一方面,一些工作表明,有机厦状况的不同又将对土壤形成过程和土壤性质产生不同的影响[3]。因此,研究土壤的腐殖质状况,不仅有助于对土壤性质的了解,而且可为成土过程,从而为土壤分类提供有益的资料。  相似文献   

14.
Persulfate oxidation of two fulvic acids from different soils was accomplished. This is a new mild chemical degradative method which differentiates between fulvic acids isolated from soils developed under widely differing environments. A fulvic acid isolated from an Humic Haplorthod gives as major oxidation products phenolic acids, whereas a fulvic acid from an Andic Hapludult yields benzenecarboxylic acids as most abundant compounds. The possibility to differentiate between fulvic acids from different soils, as chemical degradation with persulfate does, offers interesting prospects to the characterization of humic materials.  相似文献   

15.
YE Wei  WEN Qi-Xiao 《土壤圈》1996,6(2):121-128
Chemical characteristics of humic substances in soils with different mineralogical characteristics and under different utilization paterns in Zhangpu,Fujian Province,together with two pairs of cultivated soils in North China Plain were studied by chemical analysis,visible and IR spectroscopy and ^13C NMR spectrometry.For soils in Zhanpu the HA/FA ratio and both the aromaticity and the degree of humification of HA were higher in soils with montmorillonite as the predominant clay mineral than in those with kaolinite as the predominant clay mineral,provided these soils were under the same utilization pattern.While for each pair of soils with similar mineralogical characteristics the HA/FA ratio was higher and the C/H ratio and the contnet of carboxyl group of HA were lower in paddy soil than in upland soil.Among the upland soils(or paddy soils)studied the Ha/FA ratio of soil in Zhangpu with kaolinite as the predominant clay mineral was the lowest,and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest .the lowest.and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest It was concluded that the presence of montmorillonite favored the fromation and maturation of humic acid.  相似文献   

16.
Abstract

Determinations were made of total soil organic matter (SOM), stable and labile organic fractions, biomass carbon (C), and chemical composition of several humus‐soil‐fractions in Chilean volcanic soils, Andosols and Ultisols. Their physico‐chemical properties and humification degree at different stages in edaphic evolution were also assessed. In addition, organic matter models were obtained by chemical and biological syntheses and the structures and properties of natural and synthetic humic materials were compared with SOM. Results indicate that Andosols have higher SOM levels than Ultisols, but the fraction distribution in the latter suggests a shift of the more stable fractions to the more labile ones. Moreover, contents of humines, and humic and fulvic acids suggest that Chilean volcanic soil SOM is highly humified. On the other hand, among the SOM labile fractions, carbohydrate and biomass are about 15% of the SOM which are one of the most important fractions in soil fertility.  相似文献   

17.
Decomposition and humification were studied within three types of forest humus (mull, moder, and mor) by means of CPMAS 13C NMR spectroscopy combined with degradative methods. The NMR data show that O-alkyl carbon decreases in all soils, and alkyl as well as carboxyl carbon increase as depth and decomposition increase; the percentage of aromatic carbon remains constant at about 25%. With increasing depth the amount of carbon that can be identified as belonging to specific compound classes by wet chemical methods decreases from 60% to 40%. Microbial polysaccharides and the proportion of non polysaccharide O-alkyl carbon increase with depth. A selective preservation of recalcitrant, condensed lignin structural units is also observed. In order to relate the spectroscopic and chemical data from investigations of whole soils with studies of humification, samples were fractionated into fulvic acid, humic acid, and humin fractions. The fulvic acid fraction contains large concentrations of carbohydrates irrespective of the soil horizon. The humic acid fraction contains less polysaccharides, but high amounts of alkyl carbon and aromatic structures. The percentage of aromatic carbon existing in the humic acid fraction increases with depth, probably reflecting the amount and degree of oxidative decomposition of lignin. A loss of methoxyl and phenolic groups is evident in the 13C NMR spectra of the humic acid fraction. The humin fraction resembles relatively unchanged plant-derived materials as evident from the lignin parameters and carbohydrate contents. All the observed data seem to indicate that humic acids originate form oxidative degradation of humin or plant litter.  相似文献   

18.
The determination of the structure of humic substances from soils and natural waters is an intriguing problem in soil science. Humic substances consist of molecules covering a broad distribution of molecular size and involving different functional groups. Taking this into account, we have chosen smaller model systems with functional groups typically present in humic substances. We investigated theoretically, by quantum chemical calculations, the environmental effects on the complexes formed from the interaction of 2,4‐dichlorophenoxyacetic acid and its anion with acetaldehyde, methanol, methylamine, protonated methylamine, acetic acid and water. The important case of a cation bridge mechanism, with Ca2+ as the bridging cation, is also included into the set of model reactions. It is found that this cation bridge belongs to one of the most stable mechanisms of fixation of organic compounds in soils. According to our calculations the hydroxyl group forms the most stable complexes with 2,4‐D in a polar solvent environment.  相似文献   

19.
Humic fractions, arginine ammonification and soil respiration were monitored in spring, summer and autumn 1999 in natural pasture soil and in no-tillage or reduced-tillage soil under maize. The Typic Argiudoll soils, typical of the Argentine rolling pampa, can be structurally unstable, particularly when conventionally tilled, a form of soil management affecting the humification process. The no-tillage soil had a lower content of fulvic acids than the reduced-tillage soil in spring and summer, probably because the humification process was favored by residue management in no-tillage soil, with a significant increase in the most stable fraction. Both arginine ammonification and CO2 were significantly correlated with the humic acids and humin contents. No significant correlation was found with fulvic acids,probably due to the lability and high variability of this fraction. A high correlation was found between arginine ammonification and CO2. The highest index values were generally observed in natural pasture soil, whereas no-tillage soils showed a higher index value than reduced-tillage soils throughout, confirming the hypothesis that humification is more intense in the presence of organic residues.  相似文献   

20.
Abstract

Pg contents of soils chosen from the major soil groups occurring in the mountain area of Central Japan were measured by the method presented by the author in a previous paper. The Pg contents of the soils ranged from 0 to 0.58 per cent of the dry soils. In podzolic soils, Pg contents were high in A horizons and gradually decreased with depth and in some cases of brown forest soils, Pg contents were highest in B horizons. The percentage of Pg in humic acid ranged from 0 to 8.6 per cent, and the highest value was observed in the C horizon of Dando Bo soil, Pg contents were high in humid and acidic soils containing much humic acid. Humidity, soil pH and humus content may affect the Pg accumulation by controlling the activity of Pg-producing fungi. ? log K values of Pb were calculated to estimate the degree of humification of P type humic acids and indicated that Pb's were relatively immature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号