首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

2.
Nile tilapia (Oreochromis niloticus) is currently one of the most farmed freshwater fish and contributes significantly to total global aquaculture production. The genetically improved strain of O. niloticus (GIFT) was introduced to Papua New Guinea (PNG) in 1999 to improve food and income security. The high cost and low availability of commercial fish feed hinder the growth of GIFT farming in PNG. Stable carbon and nitrogen isotopes were used to determine the role of supplementary and natural food sources in the diet of GIFT in pond‐based aquaculture. Two treatments were used: treatment 1 was daily feeding, and treatment 2 was weekly feeding, each with three replicates. Isotopic analysis of muscle tissue and all potential food sources showed that pellet feed contributed 7% to the growth of GIFT in daily‐fed ponds and 33% in the weekly‐fed ponds. Highly enriched δ15N values for chicken manure, compared to depleted values for GIFT and other natural food sources in both treatments, clearly indicate insignificant contributions of this input to production. After 90 days of cultivation, the average final body weight of GIFT receiving daily feed inputs was 134 g (average 19 cm), while for weekly‐fed it was 92 g (17 cm). The feed conversion ratio (FCR) was poor (6.4:1) in the daily‐fed GIFT ponds compared to a better, and preferable, FCR (1:1) in the weekly‐fed ponds. The findings of this study show that pelleted feed was not the major contributor to the growth of GIFT. Genetically improved farmed tilapia aquaculture should focus on enhancing natural food availability for fish production.  相似文献   

3.
Five pond management strategies for Nile tilapia Oreochromis niloticus L. production were evaluated in 0.1‐ha earthen ponds in Egypt during a 145‐day production cycle. Pond management strategies developed by the Pond Dynamics/Aquaculture Collaborative Research Support Programme (PD/A CRSP) were compared with a traditional and a modified Egyptian pond management strategy. Young‐of‐year Nile (mixed‐sex or sex‐reversed) tilapia were stocked into ponds at 20 000 fish ha?1. Sex‐reversed tilapia were stocked into chemical fertilization, organic fertilization plus formulated feed and feed only treatment ponds, whereas mixed‐sex tilapia were stocked into organic fertilization plus formulated feed and chemical plus organic fertilization plus formulated feed treatment ponds. Nile tilapia yields ranged from 1274 to 2929 kg ha?1. Nile tilapia yields in organic fertilization plus formulated feed treatments were significantly greater than the yield from chemical fertilization ponds. PD/A CRSP pond management strategies did not produce significantly greater Nile tilapia yields than the traditional Egyptian system, but a larger percentage of harvested tilapia in the organic fertilization plus feed treatments were classified in the first and second class size categories compared with the traditional Egyptian system. Organic fertilization plus formulated feed pond management strategies had the highest net returns, average rate of return on capital and the highest margin between average price and break‐even prices to cover total variable costs or total costs.  相似文献   

4.
The production performances of giant freshwater prawn Macrobrachium rosenbergii and Nile tilapia Oreochromis niloticus in C/N‐controlled periphyton‐based polyculture systems were evaluated in triplicate. Three different management practices were compared: the traditional practice without addition of periphyton substrates and carbohydrate (Control), addition of maize flour to maintain a carbon: nitrogen rate of 20:1 (treatment CN) and addition of both maize flour and periphyton substrates (treatment CN+P). This experiment used a pre‐optimized stocking density of tilapia and freshwater prawn by Asaduzzaman et al. Aquaculture [286 (2009) 72]. All ponds were stocked with prawn (3 m2) and monosex Nile tilapia (1 m?2). Bamboo side shoots were posted vertically into the pond bottoms as periphyton substrate covering an additional area of 171 m2 for periphyton development. A locally formulated and prepared feed containing 17% crude protein with C/N ratio close to 15:1 was applied twice daily in all ponds considering the body weight of freshwater prawn only. Water quality parameters, except total alkalinity did not vary significantly (> 0.05) among treatments. Both, organic matter and total heterotrophic bacterial loads (THB) in the sediment were significantly (P < 0.05) higher in treatment CN+P followed by treatment CN and control. Periphyton biomass in terms of dry matter and chlorophyll a values constantly decreased during the culture period. Substrates contributed 66% and 102% higher net yield of freshwater prawn than CN and control treatment respectively.  相似文献   

5.
Abstract. A bioenergetic growth model was developed to examine the integrated effects of fertilization, stocking density, and spawning on the growth of tilapia, Oreochromis niloticus (L.), in pond aquaculture. The analyses showed that growth rates increase with higher levels of organic fertilization up to 500kg/ha/week. Growth rates increased with added food rations in ponds, reaching a maximum growth of 2-07g/day at about 44–48 days after stocking. Fish growth rates decreased with increased levels of stocking density. The stocking density for optimal growth is 1fish/m2; the optimal density for total harvesting weight and fish size is 2 fish/m2. Model sensitivity analysis indicated that tilapia growth is most sensitive to catabolism (metabolism) and anabolism (synthesis) coefficients, both of which are geometrically related to the fish body weight. Food assimilation efficiency (b) and the food consumption coefficient (h) have a modest effect on fish growth. Spawning in grow-out ponds can have a major effect on fish growth.  相似文献   

6.
To analyse the relationships among fish species performance and management procedures, a database was built up with data from 31 fish farms during the period 1976–1987 (1673 observations) and analysed through multivariate statistics (factor analysis). The data include nurseries, grow-out and operational ponds with mono- and polycultures of common carp, Cyprinus carpio, tilapia hybrid, Oreochromis niloticus × O. aureus, silver carp, Hypophthalmichthys molitrix, and mullet, Mugil cephalus. The main conclusions include the following. (1) The highest total yields and best tilapia performances were obtained in polyculture ponds where tilapia was the main species. (2) The best carp performances occurred in grow-out polyculture ponds where carp was the main species. Carp performance was improved in polycultures with mullet and silver carp, irrespective of whether tilapia were present or not. (3) Carp and tilapia yields increased as the nutritional inputs (feed pellets, sorghum pellets, manure), pond size and culture duration increased. The effect of the nutritional input was not linear, but logarithmic. (4) Growth rate of common carp was more affected by total density and stocking size than that of tilapia. Better carp and tilapia growth occurred in grow-out ponds when stocked at large sizes and cultured during short periods, mainly when both species were present. (5) Carp growth varied with the geographical region and size of fish pond, being better in smaller than in larger ponds due to reduced access to natural benthic food in deep ponds.  相似文献   

7.
In aquaculture, the benefit of autotrophic production within land-based ponds for fish production has long been recognized. In cage culture, organisms growing on the cage net have so far only been considered as a problem. This study investigated the potential production of periphyton on cage nets used in a tropical mixed tilapia culture of Oreochromis mortimeri (Trewavas), Tilapia rendalli (Boulenger) and Oreochromis niloticus (Linnaeus) in Lake Kariba, Zimbabwe. The production of periphyton was assessed experimentally and compared with the energy demand of the caged fish. The tilapias were found to graze intensively on the net, and the primary production of periphyton on the cage net was ≈ 1% relative to the energy demands of the fish.  相似文献   

8.
Tilapia wild spawning is a nuisance in warm freshwater aquaculture growout ponds. To cope with this problem two experiments were carried out with predatory fish that do not reproduce in fresh water. One experiment tested the capacity of hybrid bass (Morone saxatilis × M. chrysops) and red-drum (Sciaenops ocellatus) as predators of wild spawning of hybrid tilapia (Oreochromis niloticus × O.aureus), and the other compared predation effectiveness of red-drum of different sizes and stocking densities.Both hybrid bass and red-drum effectively reduced tilapia wild spawning and improved by 15–20% tilapia performance and food conversion ratio. These effects were obtained stocking small red-drum (20 g) or large red-drum (60–80 g) or bass (135 g) at stocking densities of 500–1000 predators/ha, together with 15000 tilapia/ha of 65–75 g. Hybrid bass stocked at 750/ha and large red-drum stocked at 500/ha presented over 90% survival. Red-drum at higher stocking density and/or lower stocking weight presented reduced survival (40–60%). Red-drum of all examined stocking weights presented better growth rates when stocked at 500/ha than at higher densities.  相似文献   

9.
Previous research showed that stocking 1.5 rohu (Labeo rohita) and 0.5 common carp (Cyprinus carpio) m−2 yields the highest production in small holder ponds in Bangladesh. The present study looked into the effects of additional stocking of Nile tilapia (Oreochromis nilotica) in fed or non‐fed ponds on water quality and fish production. A low, additional stocking density of 0.2 Nile tilapia m−2 was tested. All treatments were executed in triplicate in 100 m2 ponds and the duration of the experiment was 4.5 months. The results showed that tilapia addition increased nutrient concentrations and reduced total suspended solid concentration and phytoplankton biomass (P<0.05). Tilapia stocking resulted in additional production without affecting the growth and production of rohu and common carp. Supplemental feeding increased the nitrogen and phosphorus concentrations, phytoplankton availability and the growth and production of rohu and common carp (P<0.01). The combination of supplemental feeding and tilapia stocking resulted in a higher net yield than the other treatments (P<0.05). Stocking 1.5 rohu, 0.5 common carp and 0.2 tilapia m−2 in fed‐ponds is a good culture combination for polyculture farmers in South Asia.  相似文献   

10.
Nile tilapia, Oreochromis niloticus, is one of the most popular freshwater aquaculture species in developing countries. Although formulated feed provides higher fish yield, it is expensive. Therefore, fertilizer-based fish culture using natural food sources is generally implemented in developing countries. The aim of this study was to identify the major natural foods contributing to tilapia growth in fertilizer-based fish ponds. The stomach contents of tilapia in a fertilizer-based fish pond in Lao PDR were analyzed to estimate their feeding behaviors; stable isotope ratios of carbon and nitrogen in the potential food organisms and suspended solids were measured and compared with the ratios in the fish muscle tissues. Further, the feed efficiency of chironomid larvae was compared with that of chlorella and formulated feed in a laboratory feeding experiment. Consequently, chironomid larvae were identified as the main contributors to tilapia growth in the fertilizer-based fish pond. In conclusion, benthic larvae of insects belonging to the family Chironomidae are confirmed to be a natural food source for tilapia in the fertilizer-based fish pond.  相似文献   

11.
Reports of similar yields in manure and feed‐driven tilapia culture environments raise questions on food utilization in these environments. The possibility that similar production rates are because of utilization of different foods was investigated using exploratory techniques of multivariate analyses. Using factor analysis, trophic pathways through which food becomes available to fish were explored, and using anova models, water quality, sediment quality and tilapia growth and yields were compared. Conceptual graphic models of the main ecological processes occurring in feed‐driven and organically fertilized environments are presented and discussed. In both environments, autotrophic and heterotrophic pathways are important processes that result in the availability of natural foods that are utilized by the fish. Extrapolated fish yield data indicate that with equal nutrient input and stocking density, organically fertilized environments could achieve production rates similar to those in feed‐driven environments. The general assumption that supplemental or complete foods are well utilized by tilapia in outdoor stagnant ponds remains challenged, and further research on tilapia feeding behaviour and food selection in feed‐and organic fertilizer‐driven environments is needed.  相似文献   

12.
This study analyses the combined effects of organic and inorganic fertilization and of feeding with pellets on fish performance and water quality in a polyculture of common carp. Cyprinus Carpio L., silver carp. Hypophthalmichthys molitrix (Val.), grass carp. Ctenopharyngodon idella (Val.) and hybrid tilapia, Oreochromis niloticus L. x O. aureus Stetndachner. Experiments included six treatments, which are combinations of inorganic fertilisation (daily or fortnightly), manuring (supplied or not), feed pellets (supplied or not) and density of phytoplanktivorous fish species (high-density treatments with 50% more hybrid tilapia and 300% more silver carp than low-density treatments). The effects of the management procedures on fish weight, growth, survival and yield. plankton abundance, water quality, and their complex interactions at the different levels of the natural food web were analysed. The hypothesis that daily fertilization should increase algal production, which in turn should sustain a higher density of phytoplanktivorous fish, proved to be correct within certain limits. Algal reproduction rate was higher under daily fertilization, pointing to better supply of food for herbivorous fish, while algal biomass was similar under both fertilization regimes, pointing to the utilization of that algal food supply. The increased algal food supply sustained a 50% density increase of the omnivorous tilapia, but not the 300% density increase of the grazer silver carp.  相似文献   

13.
The production performance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) in periphyton‐based systems were studied in farmers' ponds at Mymensingh, Bangladesh. Fifteen ponds (200–300 m2 area and 1.0–1.5 m in depth) were used to compare five stocking ratios in triplicate: 100% GIFT, 75% GIFT plus 25% prawn, 50% GIFT plus 50% prawn, 25% GIFT plus 75% prawn and 100% prawn. Ponds were stocked at a total density of 20 000 GIFT and/or prawn ha?1. Bamboo poles (mean diameter 6.2 cm and 5.5 pole m?2) were posted in pond bottoms vertically as periphyton substrate. Periphyton biomass in terms of dry matter (DM), ash‐free DM and chlorophyll a were significantly higher in ponds stocked with prawn alone than in ponds with different combinations of GIFT and prawn. Survival of GIFT was significantly lower in ponds stocked with 100% GIFT (monoculture) whereas, that of prawn was significantly higher in its monoculture ponds indicating detrimental effects of GIFT on prawn's survival. Individual weight gains for both species were significantly higher in polyculture than in monoculture. The highest total fish and prawn yield (1623 kg GIFT and 30 kg prawn ha?1) over 125–140 days culture period was recorded in ponds with 75% GIFT and 25% prawn followed by 100% GIFT alone (1549 kg ha?1), 50% GIFT plus 50% prawn (1114 kg GIFT and 68 kg prawn ha?1), 25% GIFT plus 75% prawn (574 kg GIFT and 129 kg prawn ha?1) and 100% prawn alone (157 kg ha?1). This combination also gave the highest economic return. Therefore, a stocking ratio of 75% GIFT plus 25% prawn at a total density of 20 000 ha?1 appeared to be the best stocking ratio in terms of fish production as well as economics for a periphyton‐based polyculture system.  相似文献   

14.
The present research investigated the effect of stocking density on pond (75 m2, depth 1.2 m) production of Nile tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) stocked at a fixed 3:1 tilapia:prawn ratio. Three stocking densities were tried in triplicate: 20 000 ha−1 (treatment TP‐20), 30 000 ha−1 (TP‐30) and 40 000 ha−1 (TP‐40). The ponds were provided with bamboo as substrate for periphyton development. Bamboo poles (mean diameter 5.5 cm and 5.0 poles m−2) were posted vertically into pond bottoms, resulting in 60% additional substrate area in each pond. On average, 43 genera of algae and 17 genera of zooplankton were identified from pond water, whereas 42 genera of algae and six genera of microfauna were attached to bamboo substrates. No differences were observed between treatments in the ash‐free dry matter (AFDM), chlorophyll a and phaeophytin a content of periphyton (P>0.05). Survival of tilapia and prawn and individual weight gain of tilapia were lower (P<0.05) in treatment TP‐40. The net yields were higher (P<0.05) in treatments TP‐30 (2209 and 163 kg ha−1 105 day−1 of tilapia and prawn respectively) and TP‐40 (2162 and 141 kg ha−1 of tilapia and prawn respectively) than in treatment TP‐20 (1505 and 136 kg ha−1 of tilapia and prawn respectively). The net tilapia yields were quadratic correlated (R2=0.92) with fish stocking density. The cost–benefit analysis shows that the net profit margin was highest in treatment TP‐30 (69%), followed by TP‐20 (50%) and TP‐40 (44%).  相似文献   

15.
In an attempt to identify appropriate times for initial application of supplemental feed in polyculture fertilized fish production earthen ponds, a study was conducted for 19 wk to establish the growth performance, yield, survival, and body composition of Nile tilapia, common carp, and silver carp as influenced by four different feeding regimens (treatments). The four treatments were: 1) supplemental feeding beginning at onset of the experiment (T-I) (control treatment); 2) 6-wk delay of feeding after fish stocking (T-II); 3) 13-wk delay of feeding after fish stocking (T-III), and 4) no supplemental feed application (T-IV). Two ponds were assigned to each treatment and each pond was stocked with a similar number and weight of each fish species. A commercial pelleted fish feed (25% protein) was used to feed fish in T-I, T-II, and T-III at 3% of their body weight, twice a day. At the end of the experiment, fish species (except for silver carp) in T-II showed weight gain, growth rates, and yields significantly higher than fish in T-III or T-IV. Also, the total fish production and net profit in T-II were significantly higher than in T-III or T-IV. Fish species in T-II showed weight gain, growth rates, survival rates, and yields similar to those of T-I (control treatment) with no significant differences. The amount of feed consumed by fish in T-II was reduced by approximately 7.3% compared to that consumed by fish at T-I. Moreover, there was increase in th net profit in T-II by 4.8% over that achieved in T-I. Therefore, T-II appears to be the most appropriate among the tested feeding treatments and recommended for use in order to achieve the best growth, production, and net profit.  相似文献   

16.
Production characteristics and profitability of three carp-tilapia stocking ratios (1:1, 1:2 and 1:5) were compared in a semi-intensive polyculture system. The. experiment was carried out at the same total stocking density of 1 fish m2, in nine 1000-m2 earthen ponds. Common carp, Cyprinus carpio L., and a tilapia hybrid, Oreochromis niloticus (L.) x 0. aureus (Steindachner), were stocked at a joint density of 900 fish per pond, while grass carp, Ctenopharyngodon idella (Cuvier & Valenciennes), and silver carp, Hypophthalmichthys molitrix (Valenciennes), were each stocked at 50 fish per pond in all treatments. Mean harvested weights of both common carp and the tilapia hybrid were markedly decreased upon the increase in density of their own species. Survival of all four species was over 80% in all three carp-tilapia stocking ratios. The differences in relative profitability of the three carp-tilapia stocking ratios did not exceed 10% on the basis of 1991 prices. However, based on 1994 prices, relative profitability of the 1:2, and particularly, the 1:5 carp-tilapia stocking ratio were 35% and 41% higher than the 1:1 ratio, respectively. This was because of the increase in the price of large carp and tilapia of all sizes, and a decreases in the price of small carp.  相似文献   

17.
To assess potential competition for food with indigenous species prior to their release into reservoirs in north-eastern Brazil, the diet of hybrid red tilapia, Oreochromis niloticus O. mossambicus, maintained without supplementary feed in monocultures in freshwater ponds, was studied. The stomach contents of 160 fish (140–220 mm total length), collected monthly from February to September 1993, were analysed. Fish of all size categories were found to be phytoplanktivores. A total of 40 microalgal species were observed in the stomach contents (17 species of Chlorophyceae, 11 species of Bacillariophyceae, eight species of Cyanophyceae, three species of Chrysophyceae and one of Euglenophyceae), together with a few rotifers and some organic material. In terms of cell numbers, the overall composition of the diet was 70% Chlorophyceae, 21% Bacillariophyceae, 3% Chrysophyceae, 2% Cyanophyceae, 1% Euglenophyceae and 3% organic matter. Neither diet composition nor stomach fullness varied with fish size. However, fish had relatively fuller stomachs, with higher proportions of Chlorophyceae, Bacillariophyceae and Cyanophyceae, during the rainy season. Hybrid red tilapia appear unlikely to compete for food with a native species and so may have a role in aquaculture or for deliberate release into reservoirs in north-eastern Brazil.  相似文献   

18.
A four‐and‐a‐half months study was conducted in nine earthen ponds to evaluate the addition of different supplemental feeds as a management tool for enhancing natural food availability and common carp growth, while maintaining optimal water quality in the semi‐intensive system. Three supplemental feeds were used: commercial extruded and pelleted feed with 25% protein and 7% fat and cereals. The type of supplemental feed did not influence water quality, except hardness, but significantly affected abundance of cyanobacteria, natural food availability and common carp growth. The use of pelleted feed was related to the lowest abundance of cyanobacteria in the ponds. For the two groups of large zooplankton, Cladocera and Copepoda, abundances were higher in the ponds with pelleted feed compared with the ponds where cereals and extruded feed were used. The abundance of benthic macroinvertebrates in the treatment with pelleted feed was three times higher than in the other two treatments. The results of this study indicate that pelleted feed can help farmers not only as a source of nutrients for carp growth but also indirectly as a management tool for maintaining ecological stability and control of cyanobacterial bloom in ponds.  相似文献   

19.
An on-station trial was conducted to evaluate the effect of stocking density of freshwater prawn and addition of different levels of tilapia on production in carbon/nitrogen (C/N) controlled periphyton based system. The experiment had a 2 × 3 factorial design, in which two levels of prawn stocking density (2 and 3 juveniles m? 2) were investigated in 40 m2 earthen ponds with three levels of tilapia density (0, 0.5 and 1 juveniles m? 2). A locally formulated and prepared feed containing 30% crude protein with C/N ratio close to 10 was applied considering the body weight of prawn only. Additionally, tapioca starch was applied to the water column in all ponds to increase C/N ratio from 10 (as in feed) to 20. Increasing stocking density of tilapia decreased the chlorophyll a concentration in water and total nitrogen in sediment, and increased the bottom dissolved oxygen. The concentrations of inorganic nitrogenous species (NH3–N, NO2–N and NO3–N) were low due to maintaining a high C/N ratio (20) in all treatment ponds. Increasing prawn density decreased periphyton biomass (dry matter, ash free dry matter, chlorophyll a) by 3–6% whereas tilapia produced a much stronger effect. Increasing stocking density of freshwater prawn increased the total heterotrophic bacterial (THB) load of water and sediment whereas tilapia addition decreased the THB load of periphyton. Both increasing densities of prawn and tilapia increased the value of FCR. Increasing prawn density increased gross and net prawn production (independent of tilapia density). Adding 0.5 tilapia m? 2 on average reduced prawn production by 12–13%, and tilapia addition at 1 individual m? 2 produced a further 5% reduction (independent of prawn density). The net yield of tilapia was similar between 0.5 and 1 tilapia m? 2 treatments and increased by 8.5% with increasing stocking density of prawn. The combined net yield increased significantly with increasing stocking density of prawn and tilapia addition. The significantly highest benefit cost ratio (BCR) was observed in 0.5 tilapia m? 2 treatment but freshwater prawn density had no effect on it. Therefore, both stocking densities (2 and 3 juveniles m? 2) of prawn with the addition of 0.5 tilapia m? 2 resulted in higher fish production, good environmental condition and economic return and hence, polyculture of prawn and tilapia in C/N controlled periphyton based system is a promising options for ecological and sustainable aquaculture.  相似文献   

20.
Integrated multitrophic aquaculture (IMTA) systems are designed mainly for efficient use of resources. Substrates added to aquaculture ponds provide space for periphyton to settle and recover nutrients, making these nutrients available to the species being reared. The present study is centered on the phosphorus budget, analyzing the main ecological compartments of IMTA systems in earthen ponds stocked with Amazon River prawn, Macrobrachium amazonicum, and Nile tilapia, Oreochromis niloticus, with or without different added substrates. The experimental design was completely randomized, with three treatments (without a substrate, with a geotextile fabric substrate, and with a bamboo substrate) and four replications. Phosphorus entered the systems mainly in tilapia feed (ca. 50–61%), inlet water (ca. 17–27%), and fertilizer (ca. 6–7%). Input of phosphorus from other compartments ranged from 1.5 to 1.9%. Most phosphorus was accumulated at the pond bottom as sediment (ca. 60–68%) and fish biomass (ca. 18–26%), or discharged in the outlet water (ca. 7–10%). Feeding is the main driver for the distribution of phosphorus in the ponds. Levels of phosphorus retained in reared animals (20–28%) were higher in these IMTA systems than in tilapia and prawn monocultures (reported as 10–20% and 10–13%, respectively). Nonetheless, the present data showed that the addition of different types of substrates might not improve the recovery of phosphorus in animal biomass as initially supposed. Even so, these IMTA systems decreased the amount of phosphorus released in effluents, and this decrease was enhanced by the addition of substrates, reducing the impact on the receiving waterbodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号