首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
王刚  杨春晖  赵波  朱航  吴文福 《农业机械》2011,(17):105-108
粮食干燥过程数据监测是保障干燥后粮食品质和提高干燥效率的重要环节,本文针对传统有线数据采集和传输存在的问题,设计了基于nRF905的干燥过程粮食温度与水分无线数据监测系统。采用PT100温度传感器采集粮食温度,JDAI-II型谷物在线水分传感器采集粮食水分。微处理器采用AT89C2051,由nRF905模块收发数据。详细讨论了系统的工作模式及过程,重点介绍了nRF905模块的工作过程。给出了相关的硬件设计电路和完整的通信协议;利用LabVIEW语言设计美观的采集监测界面;通过实际数据通信试验验证了系统的可靠性。  相似文献   

2.
探讨了直接式胎压监控系统(TPMS)设计的关键技术,设计了一种基于智能传感器SP12及低功耗、收发一体的射频芯片nRF905的TPMS,详细地介绍了系统的电路结构,重点分析了其功耗、测量精度、可靠性等主要性能指标。经试验测试表明,测量精度、功耗达到实际应用要求,可靠性高。  相似文献   

3.
井新宇 《农业机械》2012,(9):139-142
为了显著降低有源RFID温湿度传感标签的功耗,并构成监测系统,用于蔬菜大棚和粮仓的温湿度监控。提出了采用射频SOC芯片nRF24LE1和数字温湿度传感器SHT15构成电子标签,进行超低功耗设计,实现温湿度的检测和发送;采用nRF24L01和MSP430单片机构成阅读器和控制器,实现数据的传输、处理以及控制;系统由无线传输和RS485通信方式构成三层网络结构,构建灵活、成本低和运行可靠。  相似文献   

4.
为实现果园土壤水分信息的长期可靠获取,使用超低功耗控制器MSP430F1222和微功耗无线射频收发芯片nRF905构成监测系统的无线传感器节点.同时,引入无线传感器网络的概念来适应果园面积广阔的特殊性和传感器配置灵活的要求.接收终端配备铁电非易失性RAM、液晶屏和按键,方便存储、查阅数据和参数设定.经过人工配土测试和果园现场运行,结果表明监测系统湿度的精度误差小于3%,且结构简单、功耗低、运行可靠,满足果园土壤水分监测的要求.  相似文献   

5.
针对菜农对多功能棚室遥控作业机的迫切需求,提出了一种遥控棚室作业机控制系统的设计方法。该系统硬件部分基于nRF905射频芯片进行数据传输,实现了STC89C52单片机相互之间的通信交流,采用L298N电机驱动模块、三极管以及继电器作为辅助功能部分;软件部分利用KEIL软件编写了控制程序,并以Proteus仿真平台验证了程序的正确性;最后,以实际作业机为例对控制系统进行了实验测试。结果表明:该系统具有可扩展性强、结构灵活、成本低特点,能可靠传输各种指令,从而精确控制机具的正常运转。  相似文献   

6.
随着淡水资源的匮乏,节水灌溉在农业中的推广已是必然趋势。为此,设计了基于无线数据传输的自动控制灌溉控制系统,介绍了无线射频技术的代表芯片nRF905的使用,从而突破了传统灌溉系统的有线数据传输模式,具有抗干扰能力强和传输距离远的特点;介绍了常见的上位机开发工具,并使用LABVIEW编写上位机。经实地测试使用表明,系统达到了良好的节水目的。  相似文献   

7.
本控制系统基于STC89C51单片机,将单片机作为系统控制核心,系统由主机和从机组成,通过无线传输,主机发送控制指令,从机接收指令并控制小车运行,实现无线遥控小车控制系统。主机软件设计分为无线数据传输程序、控制程序和显示程序,从机软件设计分为小车车速数据采集(中断处理程序)、无线传输程序、车体控制程序、数码显示程序。通过调试,控制系统较好地实现了无线遥控小车的前进、后退、左转、右转、显示运动状态和行驶路程的功能。  相似文献   

8.
随着节水灌溉的快速发展,智能节水系统成为一个发展热点.系统以c8051F020单片机为微控制器,将无线数据传输及控制系统应用于智能灌溉体系.通过c8051F020控制无线模块NRF905采用跳频传输的方式实现数据的收发,由太阳能电池供电,从而完成对灌溉的控制及数据的传输.系统设计简单、低成本、低功耗,适用于无人作业或不便于铺设线缆等应用环境.  相似文献   

9.
设计开发基于nRF24L01的无人机植保无线数据传输采集控制系统,该系统主要由机载作业系统和地面遥控作业系统两部分组成。机载作业系统由51单片机将无人机植保作业系统传感器及作业状态数据采集计算,通过nRF24L01无线数据传输模块,与地面遥控作业系统进行控制数据的双向传输,实现无人机植保作业信息的数据传输以及作业控制。介绍植保系统的硬件结构组成、无线传输软件设计、无线传输协议和参数设定以及软硬件的调试。通过实际应用,该系统运行平稳,性能可靠,实现植保作业的数据精准化、控制变量化。  相似文献   

10.
介绍了一种结合嵌入式技术和无线传感器网络技术的温室现场环境信息无线采集系统的设计方案.系统主要由嵌入式控制终端和无线传感器网络节点组成.控制终端基于ARM9处理器和嵌入式Linux操作系统设计,用于温室环境数据的接收、远程发送,实时显示和存储.控制终端向远程服务器发送数据,并接收命令,两者之间的通信使用GPRS方式.无线传感器网络采集温室环境数据,并发送给控制终端.整个温室现场监测系统避免了传统温室使用有线方式布线的繁琐.  相似文献   

11.
设计了一种不同类型的农业机械化鸡舍温湿度无线数据采集系统。基于射频芯片nRF905进行数据传输,以单片机Atmega16为主控制器,采用温度传感器DS18B20和KSW系列湿度传感器,实现了不同类型鸡舍温湿度的采集、传送和LCD液晶显示,并且在温度超过设定范围时驱动蜂鸣器向工作人员发出报警信号。  相似文献   

12.
应用基于蓝牙技术的无线收发芯片NRF401,研究了农用车性能检测线中信号无线传输技术和实现方法.通过单片机对无线收发芯片NRF401进行智能控制的、通用无线收发装置的、设计方法开发的无线收发装置,可以方便地嵌入各种控制系统中,实现无线数据的双向传输,以改进目前车辆性能检测线中所采用的信号传输技术和方法,简化信号的传送方式和工程布线,方便线路的维护和检修等.  相似文献   

13.
设计了一种适用于拖拉机的无线射频遥控换挡系统,论述了设计原则与总体方案,对编码解码器、无线发射接收模块、单片机进行了选择,对硬件部分电路进行了设计,完成了单片机系统的编程、模拟与调试,并验证了该设计的正确性。  相似文献   

14.
杨靖  林益  李捍东 《农机化研究》2012,34(6):157-160
针对智能监测温室环境的需要,提出一种基于CAN总线和无线传感器网络(WSNs)的温室环境监测系统的实施方案。首先,介绍了基于CAN总线和WSNs的监测系统的总体结构;然后,设计了基于nRF9E5,nRF905和MSP430F149的智能节点;最后,给出相应的软件流程。该系统可以很好地实现对温室中影响植物生长的关键环境因子监测,为温室智能化管理提供科学依据。  相似文献   

15.
设计一种高压开关柜触头温度无线监测系统。采用nRF240X系列的射频芯片,通过无线射频通信技术解决传感器与采集器之间的高电压隔离问题;通过对无线传感器模块的低功耗设计,采用MSP430F2013低功耗单片机等一系列措施.实现对传感器模块电池供电;利用CAN总线技术实现对整个厂区的温度无线监测。  相似文献   

16.
我国拖拉机主要以手动操作为主,为提高拖拉机的作业强度、精度和效率,替代人工操作,为无线远距离控制、高精度自主导航、机械视觉导航和物联网等相关作业技术提供拖拉机运动控制接口,提出了在柴油发动机驱动履带式拖拉机底盘上搭载电子油门控制装置和电控液压转向装置的设计方案,可实现远程无线遥控固定角度转向、车速控制和实时返回状态数据等功能。试验表明:电子油门控制装置对油门拉杆控制响应速度快、控制准确,固定角度转向误差在±3°范围内,调试遥控器稳定控制距离350m,上位机无线接收稳定数据距离200 m。研究成果可为拖拉机运动控制系统设计与改进提供参考。  相似文献   

17.
鉴于药品本身的特殊性受环境温度及湿度因素的影响较大,本系统设计一款专门针对基层中小型药房使用的无线温湿度监控系统,具有"实用、小巧、成本低、移动性好"的特点。本系统选用Nrf905无线数据收发模块解决布线成本高及不便移动的问题。  相似文献   

18.
CO2是绿色植物进行光合作用的主要原料,其含量严重影响植物品质,现有无线调控系统因成本高、层次多,不适合我国农业发展的现状。针对以上问题,基于不同环境、不同作物的不同要求,研制了以CC2430为中央处理芯片、采用Zigbee技术无线传输的CO2浓度精准调控系统。该系统采用模块化设计,包含中央处理单元、数据采集模块、控制模块、电源模块和人机交互模块,通过模块组合和加载软件的差异形成监测和控制2大类设备。各设备间通过Zigbee协议实现自组网方式下多跳数据交互,完成基于现场检测结果的CO2浓度的精准控制。在温室大棚的实用结果表明,其可实现上述设计功能,具有监测精度高、可靠性高、使用简单、成本较低和扩展性强等特点。  相似文献   

19.
设计了以LPC2132为主控芯片、GSM短信模块为无线数据传输媒介,利用温湿度传感器、水位检测、AD转换、液晶显示等一系列外围元件,实现集系统的数据采集、传输和控制为一体的智能温室远程控制系统。通过实际应用表明,该系统运行可靠、操作简单,且对湿帘用水实现了循环利用,具有一定的应用前景和推广价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号