首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recognition and management of acid-base disorders is a commonplace activity in the critical care unit, and the role of weak and strong acids in the genesis of metabolic acid-base disorders is reviewed. The clinical approach to patients with metabolic alkalosis and metabolic acidosis is discussed in this article.  相似文献   

2.
Respiratory acid-base disorders, although infrequently diagnosed in veterinary medicine, can cause or contribute to adverse clinical outcomes. Recognition of the mechanisms and causes of respiratory acidosis and alkalosis can prompt clinical detection of the acid-base derangement, allowing for appropriate intervention.  相似文献   

3.
The body regulates pH closely to maintain homeostasis. The pH of blood can be represented by the Henderson-Hasselbalch equation: pH = pK + log [HCO3-]/PCO2 Thus, pH is a function of the ratio between bicarbonate ion concentration [HCO3-] and carbon dioxide tension (PCO2). There are four simple acid base disorders: (1) Metabolic acidosis, (2) respiratory acidosis, (3) metabolic alkalosis, and (4) respiratory alkalosis. Metabolic acidosis is the most common disorder encountered in clinical practice. The respiratory contribution to a change in pH can be determined by measuring PCO2 and the metabolic component by measuring the base excess. Unless it is desirable to know the oxygenation status of a patient, venous blood samples will usually be sufficient. Metabolic acidosis can result from an increase of acid in the body or by excess loss of bicarbonate. Measurement of the "anion-gap" [(Na+ + K+) - (Cl- + HCO3-)], may help to diagnose the cause of the metabolic acidosis. Treatment of all acid-base disorders must be aimed at diagnosis and correction of the underlying disease process. Specific treatment may be required when changes in pH are severe (pH less than 7.2 or pH greater than 7.6). Treatment of severe metabolic acidosis requires the use of sodium bicarbonate, but blood pH and gases should be monitored closely to avoid an "overshoot" alkalosis. Changes in pH may be accompanied by alterations in plasma potassium concentrations, and it is recommended that plasma potassium be monitored closely during treatment of acid-base disturbances.  相似文献   

4.
Mixed acid-base disturbances are combinations of two or more primary acid-base disturbances. Mixed acid-base disturbances may be suspected on the basis of findings obtained from the medical history, physical examination, serum electrolytes and chemistries, and anion gap. The history, physical examination, and serum biochemical profile may reveal disease processes commonly associated with acid-base disturbances. Changes in serum total CO2, serum potassium and chloride concentrations, or increased anion gap may provide clues to the existence of acid-base disorders. Blood gas analysis is usually required to confirm mixed acid-base disorders. To identify mixed acid-base disorders, blood gas analysis is used to identify primary acid-base disturbance and determine if an appropriate compensatory response has developed. Inappropriate compensatory responses (inadequate or excessive) are evidence of a mixed respiratory and metabolic disorder. The anion gap is also of value in detecting mixed acid-base disturbances. In high anion gap metabolic acidosis, the change in the anion gap should approximate the change in serum bicarbonate. Absence of this relationship should prompt consideration of a mixed metabolic acid-base disorder. Finding an elevated anion gap, regardless of serum bicarbonate concentration, suggests metabolic acidosis. In some instances, elevated anion gap is the only evidence of metabolic acidosis. In patients with hyperchloremic metabolic acidosis, increases in the serum chloride concentration should approximate the reduction in the serum bicarbonate concentration. Significant alterations from this relationship also indicate that a mixed metabolic disorder may be present. In treatment of mixed acid-base disorders, careful consideration should be given to the potential impact of therapeutically altering one acid-base disorder without correcting others.  相似文献   

5.
An understanding of acid-base disturbances depends on the interpretation of changes in blood pH, P-co-2, and bicarbonate concentration and a comprehension of the physiologic mechanisms that control them. The physiologic relationships between Pco-2 and bicarbonate can be visualized by means of the balance nomogram and this visualization facilitates determination of any excess or deficit for both respiratory and metabolic factors.  相似文献   

6.
7.
8.
9.
10.
The issue of the acid-base balance (ABB) parameters and their disorders in pets is rarely raised and analysed, though it affects almost 30% of veterinary clinics patients. Traditionally, ABB is described by the Henderson-Hasselbach equation, where blood pH is the resultant of HCO3- and pCO2 concentrations. Changes in blood pH caused by an original increase or decrease in pCO2 are called respiratory acidosis or alkalosis, respectively. Metabolic acidosis or alkalosis are characterized by an original increase or decrease in HCO3- concentration in the blood. When comparing concentration of main cations with this of main anions in the blood serum, the apparent absence of anions, i.e., anion gap (AG), is observed. The AG value is used in the diagnostics of metabolic acidosis. In 1980s Stewart noted, that the analysis of: pCO2, difference between concentrations of strong cations and anions in serum (SID) and total concentration of nonvolatile weak acids (Atot), provides a reliable insight into the body ABB. The Stewart model analyses relationships between pH change and movement of ions across membranes. Six basic types of ABB disorders are distinguished. Respiratory acidosis and alkalosis, strong ion acidosis, strong ion alkalosis, nonvolatile buffer ion acidosis and nonvolatile buffer ion alkalosis. The Stewart model provides the concept of strong ions gap (SIG), which is an apparent difference between concentrations of all strong cations and all strong anions. Its diagnostic value is greater than AG, because it includes concentration of albumin and phosphate. The therapy of ABB disorders consists, first of all, of diagnosis and treatment of the main disease. However, it is sometimes necessary to administer sodium bicarbonate (NaHCO3) or tromethamine (THAM).  相似文献   

11.
12.
13.
Ascites and renal dysfunction are often associated with decreased liver function and reflect the complex abnormalities of water, protein, electrolyte, and acid-base metabolism that may complicate severe liver disease. This article discusses the pathophysiology and management of ascites, polydipsia and polyuria, decreased renal function, and acid-base and electrolyte alterations that can complicate liver disease.  相似文献   

14.
The purpose of this study was to compare traditional and quantitative approaches in analysis of the acid-base and electrolyte imbalances in horses with acute gastrointestinal disorders. Venous blood samples were collected from 115 colic horses, and from 45 control animals. Horses with colic were grouped according to the clinical diagnosis into 4 categories: obstructive, ischemic, inflammatory, and diarrheic problems. Plasma electrolytes, total protein, albumin, pH, pCO2, tCO2, HCO3-, base excess, anion gap, measured strong ion difference (SIDm), nonvolatile weak buffers (A(tot)), and strong ion gap were determined in all samples. All colic horses revealed a mild but statistically significant decrease in iCa2+ concentration. Potassium levels were mildly but significantly decreased in horses with colic, except in those within the inflammatory group. Additionally, the diarrheic group revealed a mild but significant decrease in Na+, tCa, tMg, total protein, albumin, SIDm, and A(tot). Although pH was not severely altered in any colic group, 26% of the horses in the obstructive group, 74% in the ischemic group, 87% in the inflammatory group, and 22% in the diarrheic group had a metabolic imbalance. In contrast, when using the quantitative approach, 78% of the diarrheic horses revealed a metabolic imbalance consisting mainly of a strong ion acidosis and nonvolatile buffer ion alkalosis. In conclusion, mild acid-base and electrolyte disturbances were observed in horses with gastrointestinal disorders. However, the quantitative approach should be used in these animals, especially when strong ion imbalances and hypoproteinemia are detected, so that abnormalities in acid-base status are evident.  相似文献   

15.
16.
The study were performed on 90 piglets of both sexes, divided into two groups, i.e. control, consisting of 30 healthy animals, and experimental, including 60 piglets with symptoms of gastroenteritis. Clinical, hematological and biochemical tests were performed in all the animals at the age of 21 and 35 days, and 7 days after weaning. Hematological investigations included the determination of Hb, Ht, Erys, Lkcs, MCHC and MCV. Biochemical analyses allowed to determine the serum activity of ALT, ALP, LDH and its isoenzymes, the serum level of Na+, K+ and Cl-, as well as the serum content of glucose, cholesterol and total protein. Indices of the acid-base equilibrium were determined in whole blood. The results obtained show that anemia and a tendency towards metabolic acidosis observed in healthy piglets may have a negative effect on homeostasis. Hypotonic dehydration, metabolic acidosis and energy deficits found in piglets with gastroenteritis may cause damage of some organs including the liver and pancreas. It was also found that isoenzymatic separation of LDH together with indices of the so called hepatic profile may be helpful to diagnose hepatocellular damage.  相似文献   

17.
Many nutraceuticals, conditionally essential nutrients, and botanical extracts have been proposed as useful in the management of liver disease. The most studied of these are addressed in terms of proposed mechanisms of action, benefits, hazards, and safe dosing recommendations allowed by current information. While this is an area of soft science, it is important to keep an open and tolerant mind, considering that many major treatment discoveries were in fact serendipitous accidents.  相似文献   

18.
19.
Organophosphorus compounds are esters of alcohols with phosphoric acids or anhydrides of phosphoric acids with some other acids. The most important groups are the phosphates, phosphorothionates, phosphorothioates, phosphoroamidates, phosphorochloridate and phosphonates. The metabolism of phosphorothionates and phosphorothioates involves initial activation (oxidative desulphuration) followed by hydrolysis of the active metabolites. Activation is carried out by the action of microsomal oxidases, and degradation is performed by different types of hepatic and plasma esterases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号