首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Over time, the relative effect of elevated [CO2] on the photosynthesis and dry matter (DM) production of rice crops is likely to be changed with increasing duration of CO2 exposure. However, there is no systemic information on interactive effects of elevated [CO2] and nitrogen (N) supply on seasonal changes in phosphorus (P) nutrient of rice crops. In order to investigate the interactive effects of these two factors on seasonal changes in plant P concentration, uptake, efficiency and allocation, a free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003. A japonica cultivar with large panicle was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significantly increased shoot P concentration (dry base) over the season, the average responses varied between 7.3% and 16.2%. Shoot P uptake responses to FACE declined gradually with crop development, with average responses of 57%, 51%, 37%, 26% and 11% on average during the growth periods from transplanting to early-tillering (Period I), early-tillering to mid-tillering (Period II), mid-tillering to panicle initiation (Period III), panicle initiation to heading (Period IV) and heading to grain maturity (Period V), respectively. Seasonal changes in shoot P uptake ratio (i.e., the ratio of shoot P uptake during a given growth period to final shoot P acquisition at grain maturity) responses to FACE followed a similar pattern to that of shoot P uptake, with average responses of 19%, 14%, 3%, −5% and −16% in Periods I, II, III, IV and V of the growth period, respectively. As a result, FACE enhanced shoot P uptake by 33% at grain maturity. P allocation patterns among above-ground organs were not altered by FACE before heading, but it was modified after heading, with a shift in P allocation patterns towards vegetative organ. FACE resulted in the significant decrease in P-use efficiency for biomass across the season and P-use efficiency for grain yield and P harvest index at grain maturity. Generally, there were no interactions between [CO2] and N supply on above P nutrient variables measured. Data from this study has important implications for P management in rice production systems under future elevated [CO2] conditions.  相似文献   

2.
Hybrid rice cultivar plays an important role in rice production system due to its high yield potential and resistance to environmental stress. Quantification of its responses to rising CO2 concentration ([CO2]) will reduce our uncertainty in predicting future food security and assist in development of adaptation strategies. Using free air CO2 enrichment (FACE), we measured seasonal changes in growth and nitrogen (N) uptake of an inter-subspecific hybrid rice cultivar Liangyoupeijiu grown under two levels of [CO2] (ambient and elevated by 200 μmol mol−1) and two levels of N fertilization in 2005–2006. Average across the 2 years, FACE increased crop growth rate similarly by 22%, 24% and 23% in the periods from transplanting to panicle initiation (PI), PI to heading and heading to maturity, which was mainly attributed to an increase in green leaf area index rather than the greater net assimilation rate. Grain yield increased greatly under FACE as a result of similar contributions by panicle number per unit area, grain number per panicle and individual grain yield. Final aboveground N acquisition showed a 10.4% increase under FACE, which resulted from enhanced N uptake at both vegetative and reproductive growth stages. Compared with previous FACE studies on final productivity of two inbred japonica cultivars, inter-subspecific hybrid cultivar appears to profit more from elevated [CO2], which mainly resulted from its greater enhancement in photosynthetic production during reproductive growth due to a lack of N limitations late in the season.  相似文献   

3.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate growth of C3 crops. Although barley is one of the important cereals of the world, little information exists about the effect of elevated [CO2] on grain yield of this crop, and realistic data from field experiments are lacking. Therefore, winter barley was grown within a crop rotation over two rotation cycles (2000 and 2003) at present and elevated [CO2](375 ppm and 550 ppm) and at two levels of nitrogen supply (adequate (N2): 262 kg ha−1 in 1st year and 179 kg ha−1 in 2nd year) and 50% of adequate (N1)). The experiments were carried out in a free air CO2 enrichment (FACE) system in Braunschweig, Germany. The reduction in nitrogen supply decreased seasonal radiation absorption of the green canopy under ambient [CO2] by 23%, while CO2 enrichment had a positive effect under low nitrogen (+8%). Radiation use efficiency was increased by CO2 elevation under both N levels (+12%). The CO2 effect on final above ground biomass was similar for both nitrogen treatments (N1: +16%; N2: +13%). CO2 enrichment did not affect leaf biomass, but increased ear and stem biomass. In addition, final stem dry weight was higher under low (+27%) than under high nitrogen (+13%). Similar findings were obtained for the amount of stem reserves available during grain filling. Relative CO2 response of grain yield was independent of nitrogen supply (N1: +13%; N2: +12%). The positive CO2 effect on grain yield was primarily due to a higher grain number, while changes of individual grain weight were small. This corresponds to the findings that under low nitrogen grain growth was unaffected by CO2 and that under adequate nitrogen the positive effect on grain filling rate was counterbalanced by shortening of grain filling duration.  相似文献   

4.
The objective of this study was to identify physiological processes that result in genotypic and N fertilization effects on rice yield response to elevated atmospheric CO2 concentrations ([CO2]). This study conducted growth and yield simulations for 9 rice genotypes grown at 4 climatically different sites in Asia, assuming the current atmospheric [CO2] (360 ppm) and elevated [CO2] (700 ppm) using 5 levels of N fertilizer (4, 8, 12, 16, 20 g m−2 N fertilizer). A rice growth model that was developed and already validated for 9 different genotypes grown under 7 sites in Asia was used for the simulation, integrating additional components into the model to explain the direct effect of [CO2] on several physiological processes. The model predicted that the relative yield response to elevated [CO2] (RY, the ratio of yield under 700 ppm [CO2] to that under 360 ppm [CO2]) increased with increasing N fertilizer, ranging from 1.12 at 4 g m−2 N fertilizer to 1.22 at 20 g m−2 N fertilizer, averaged overall genotypes and locations. The model also predicted a large genotypic variation in RY at the 20 g N treatment, ranging from 1.08 for ‘WAB450-I-B-P-38-HB’ to 1.41 for ‘Takanari’ averaged overall locations. Combining all genotypes grown at the 5N fertilization conditions, a close 1:1 relationship was predicted between RY and the relative [CO2] response in spikelet number for crops with a small number of spikelets (less than 30,000 m−2) under the current atmospheric [CO2] (n = 18, r = 0.89***). In contrast, crops with a large number of spikelets under the current atmospheric [CO2] showed a significantly larger RY than the relative [CO2] response for spikelet number per unit area. The model predicted that crops with a larger number of spikelets under the current atmospheric [CO2] derived great benefit from elevated [CO2] by directly allocating increased carbohydrate to their large, vacant sink, whereas crops with a smaller number of spikelets primarily required an increased spikelet number to use the increased carbohydrate to fill grains. The simulation analyses suggested that rice with a larger sink capacity relative to source availability under the current atmospheric [CO2] showed a larger yield response to elevated [CO2], irrespective of whether genotype or N availability was the major factor for the large sink capacity under the current [CO2]. The model predicted that the RY response to nitrogen was brought about through the N effects on spikelet number and non-structural carbohydrate accumulation. The genotypic variation in RY was related to differences in spikelet differentiation efficiency per unit plant N content. Further model validation about the effects of [CO2] on growth processes is required to confirm these findings considering data from experimental studies.  相似文献   

5.
Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle and high yield potential. However, no attention has been given to its yield responses to rising atmospheric [CO2] in conjunction with nitrogen (N) availability. Therefore we conducted a free air CO2 enrichment (FACE) experiment at Yangzhou, Jiangsu, China (119°42′0′′E, 32°35′5′′N), in 2004–2006. A three-line hybrid indica rice cv. Shanyou 63 was grown at ambient and elevated (ca. 570 μmol mol−1) [CO2] under two levels of supplemental N (12.5 g Nm−2 and 25 g Nm−2). Elevated [CO2] had no effect on phenology, but substantially enhanced grain yield (+34%). The magnitude of yield response to [CO2] was independent of N fertilization, but varied among different years. On average, elevated [CO2] increased the panicle number per square meter by 10%, due to an increase in maximum tiller number under enrich [CO2], while productive tiller ratio remained unaffected. Spikelet number per panicle also showed an average increase of 10% due to elevated [CO2], which was supported by increased plant height and stem dry weight per tiller. Meanwhile, elevated [CO2] caused a significant enhancement in both filled spikelet percentage (+5%) and individual grain weight (+4%). Compared with the two prior FACE studies on rice, hybrid indica rice cultivar appears to profit much more from elevated [CO2] than japonica rice cultivar (ca. +13%), not only due to its stronger sink generation, but also enhanced capacity to utilize the carbon sources in a high [CO2] environment. The above data has significant implication with respect to N strategies and cultivar selection under projected future [CO2] levels.  相似文献   

6.
Nitrogen (N) fertilizer represents a significant cost for the grower and may also have environmental impacts through nitrate leaching and N2O (a greenhouse gas) emissions associated with denitrification. The objectives of this study were to analyze the genetic variability in N-use efficiency (grain dry matter (DM) yield per unit N available from soil and fertilizer; NUE) in winter wheat and identify traits for improved NUE for application in breeding. Fourteen UK and French cultivars and two French advanced breeding lines were tested in a 2 year/four site network comprising different locations in France and in the UK. Detailed growth analysis was conducted at anthesis and harvest in experiments including DM and N partitioning. Senescence of either the flag leaf or the whole leaf canopy was assessed from a visual score every 3-4 days from anthesis to complete canopy senescence. The senescence score was fitted against thermal time using a five parameters monomolecular-logistic equation allowing the estimation of the timing of the onset and the rate of post-anthesis senescence. In each experiment, grain yield was reduced under low N (LN), with an average reduction of 2.2 t ha−1 (29%). Significant N × genotype level interaction was observed for NUE. Crop N uptake at harvest on average was reduced from 227 kg N ha−1 under high N (HN) to 109 kg N ha−1 under LN conditions while N-utilization efficiency (grain DM yield per unit crop N uptake at harvest; NUtE) increased from 34.0 to 52.1 kg DM kg−1 N. Overall genetic variability in NUE under LN related mainly to differences in NUtE rather than N-uptake efficiency (crop N uptake at harvest per unit N available from soil and fertilizer; NUpE). However, at one site there was also a positive correlation between NUpE and NUE at LN in both years. Moreover, across the 2 year/four site network, the N × genotype effect for NUpE partly explained the N × genotype effect for grain yield and NUE. Averaging across the 16 genotypes, the timing of onset of senescence explained 86% of the variation in NUtE amongst site-season-N treatment combinations. The linear regression of onset of senescence on NutE amongst genoytpes was not significant under HN, but at three of the four sites was significant under LN explaining 32-70% of the phenotypic variation amongst genotypes in NutE. Onset of senescence amongst genotypes was negatively correlated with the efficiency with which above-ground N at anthesis was remobilized to the grain under LN. It is concluded that delaying the onset of post-anthesis senescence may be an important trait for increasing grain yield of wheat grown under low N supply.  相似文献   

7.
《Field Crops Research》2006,98(1):12-19
It is reported that stimulating effect of elevated atmospheric [CO2] on photosynthesis of rice (Oryza sativa L.) is likely to be reduced during the plant growth period. However, there is little information on seasonal changes in dry matter (DM) production and distribution of rice under elevated atmospheric [CO2]. A free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003, using Wuxiangging 14, a japonica cultivar. The rice was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with 25 g N m2, which is the normal N application rate for local farmers. DM accumulation of rice in FACE plots was significantly increased by 40, 30, 22, 26 and 16% on average at tillering, panicle initiation (PI), heading, mid-ripening and grain maturity, respectively. Rice DM production under FACE was significantly enhanced by 41, 27, 15 and 38% on average during the growth periods from transplanting to tillering (Period 1), tillering to PI (Period 2), PI to heading (Period 3) and heading to mid-ripening (Period 4), respectively, but significantly decreased by 25% in the period from mid-ripening to grain maturity (Period 5). In general, seasonal changes in crop response to FACE in both green leaf area index (GLAI) and net assimilation rate (NAR) followed a similar pattern to that of the DM production. Under FACE the leaves decreased significantly in proportion to the total above-ground DM over the season, the stems showed an opposite trend, while the spikes depended on crop development stage: showing no change at heading, significant increase (+4%) at mid-ripening and significant decrease (−3%) at grain maturity. Grain yield was stimulated by an average of 13% by FACE, due to increased total DM production rather than any changes in partitioning to the grain. We conclude that the gradual acclimation of rice growth to elevated [CO2] do not occur inevitably, and it could also be altered by environmental conditions (e.g., cultivation technique).  相似文献   

8.
Retention and/or reincorporation of plant residues increases soil organic nitrogen (N) levels over the long-term is associated with increased crop yields. There is still uncertainty, however, about the interaction between crop residue (straw) retention and N fertilizer rates and sources. The objective of the study was to assess the influence of straw management (straw removed [SRem] and straw retained [SRet]), N fertilizer rate (0, 25, 50 and 75 kg N ha−1) and N source (urea and polymer-coated urea [called ESN]) under conventional tillage on seed yield, straw yield, total N uptake in seed + straw and N balance sheet. Field experiments with barley monoculture (1983-1996), and wheat/barley-canola-triticale-pea rotation (1997-2009) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Argicryoll] silty clay loam at Ellerslie) in north-central Alberta, Canada. On the average, SRet produced greater seed yield (by 205-220 kg ha−1), straw yield (by 154-160 kg ha−1) and total N uptake in seed + straw (by 5.2 kg N ha−1) than SRem in almost all cases in both periods at Ellerslie, and only in the 1997-2009 period at Breton (by 102 kg seed ha−1, 196 kg straw ha−1 and by 3.7 kg N ha−1) for both N sources. There was generally a considerable increase in seed yield, straw yield and total N uptake in seed + straw from applied N up to 75 kg N ha−1 rate for both N sources at both sites and more so at Breton, but the response to applied N decreased with increasing N rate. The ESN was superior to urea in increasing seed yield (by 109 kg ha−1), straw yield (by 80 kg ha−1) and total N uptake in seed + straw (by 2.4 kg N ha−1) in the 1983-1996 period at Breton (mainly at the 25 and 50 kg N ha−1 rates). But, urea produced greater straw yield (by 95 kg ha−1) and total N uptake in seed + straw (by 3.3 kg N ha−1) than ESN in the 1983-1996 period at Ellerslie. The N balance sheets over the 1983-2009 study duration indicated large amounts of applied N unaccounted for (ranged from 740 to 1518 kg N ha−1 at Breton and from 696 to 1334 kg N ha−1 at Ellerslie), suggesting a great potential for N loss from the soil-plant system through denitrification and/or nitrate leaching, and from the soil mineral N pool by N immobilization. In conclusion, the findings suggest that long-term retention of crop residue may gradually improve soil productivity. The effectiveness of N source varied with soil type.  相似文献   

9.
We investigated wheat (Triticum aestivum) grain quality under Free Air CO2 Enrichment (FACE) of 550 ± 10% CO2 μmol mol−1. In each of two full growing seasons (2008 and 2009), two times of sowing were compared, with late sowing designed to mimic high temperature during grain filling. Grain samples were subjected to a range of physical, nutritional and rheological quality assessments. Elevated CO2 increased thousand grain weight (8%) and grain diameter (5%). Flour protein concentration was reduced by 11% at e[CO2], with the highest reduction being observed at the late time of sowing in 2009, (15%). Most of the grain mineral concentrations decreased under e[CO2] - Ca (11%), Mg (7%), P (11%) and S (7%), Fe (10%), Zn (17%), Na (19%), while total uptake of these nutrients per unit ground area increased. Rheological properties of the flour were altered by e[CO2] and bread volume reduced by 7%. Phytate concentration in grains tended to decrease (17%) at e[CO2] while grain fructan concentration remained unchanged. The data suggest that rising atmospheric [CO2] will reduce the nutritional and rheological quality of wheat grain, but at high temperature, e[CO2] effects may be moderated. Reduced phytate concentrations at e[CO2] may improve bioavailability of Fe and Zn in wheat grain.  相似文献   

10.

Background

Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance.

Results

The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars.

Conclusion

Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress.  相似文献   

11.
The CERES-sorghum module of the Decision Support System for Agro-Technological Transfer (DSSAT) model was calibrated for sorghum (Sorghum bicolor (L.) Moench) using data from sorghum grown with adequate water and nitrogen and evaluated with data from several N rates trials in Navrongo, Ghana with an overall modified internal efficiency of 0.63. The use of mineral N fertilizer was found to be profitable with economically optimal rates of 40 and 80 kg N ha−1 for more intensively managed homestead fields and less intensively managed bush fields respectively. Agronomic N use efficiency varied from 21 to 37 kg grain kg−1 N for the homestead fields and from 15 to 49 kg grain kg−1 N in the bush fields. Simulated grain yield for homestead fields at 40 kg N ha−1 application was equal to yield for bush fields at 80 kg N ha−1. Water use efficiency generally increased with increased mineral N rate and was greater for the homestead fields compared with the bush fields. Grain yield per unit of cumulative evapo-transpiration (simulated) was consistently higher compared with yield per unit of cumulative precipitation for the season, probably because of runoff and deep percolation. In the simulation experiment, grain yield variability was less with mineral N application and under higher soil fertility (organic matter) condition. Application of mineral N reduced variability in yield from a CV of 37 to 11% in the bush farm and from 17 to 7% in the homestead fields. The use of mineral fertilizer and encouraging practices that retain organic matter to the soil provide a more sustainable system for ensuring crop production and hence food security.  相似文献   

12.
Wheat in Haryana (NW India) is grown as a winter crop in an annual sequence with rice, cotton, pearl millet or cluster bean as the main monsoon crops. Higher wheat yields in Haryana are associated with the use of modern varieties, increase in fertiliser use, improved irrigation practice and conservation tillage, and the recommendation to farmers for N fertiliser rates and timing and irrigation practice have an emphasis on optimising yield and input efficiencies. In India the importance to consumers of product quality does exist and, although the market place presently does not actively reward farmers for better quality wheat, the need for creating suitable and targeted marketing opportunities is now recognised. This paper examines aspects of input efficiencies and focuses on combinations of N-fertiliser and irrigation input in wheat crops grown with these four rotations (rice-wheat, cotton-wheat, pearl millet-wheat and cluster bean-wheat). Management practices that optimise grain production as well targeting grain that achieves best chapatti (Indian flat bread) quality are evaluated within a split-plot experiment where 4 irrigation schedule treatments were split with nitrogen management treatments involving a 2-way or 3-way split of N fertiliser. With the rice-wheat system, there were no differences between different split timings of N with grain yield, however with the 3 other wheat systems the 3 way split of N-fertiliser application, with N applied equally at N-fertiliser applied at seeding, early tillering and first node stage, always gave the highest yield. With all 4 rotations the highest protein level was achieved (range 11.8-12.5%) with this 3-way N application split. Grain yield increased in a step-wise manner as additional irrigation was implemented with all rotations and the highest protein outcomes were achieved with the least irrigations. The apparent recovery of N fertiliser applied was similar and highest with the 3-way split, and the 2-way split that did not include a basal N fertiliser application. Different rates of N fertiliser were included in separate experiments using the 3-way split of N application, and with the rice-wheat rotation the GreenSeeker instrument was used to establish the rate for the third application of N. The application of extra N-fertiliser with the non rice-wheat rotations produced no additional grain yield with an increase in the N-fertiliser input beyond 150 kg N ha−1, although protein and N-content increased incrementally. Grain hardness and chapatti score trended higher with increases in N-fertiliser input but the increases were relatively small. The use of the GreenSeeker instrument with the rice-wheat rotation resulted in N saving of 21-25 kg N ha−1 with similar grain yield, protein and grain hardness to that provided by using the recommended 150 kg N ha−1. Where the GreenSeeker was used the apparent recovery was 70-75% compared with 60% with the wheat receiving the recommended 150 kg N ha−1, suggesting farmers are likely to be over-fertilising their wheat crop. The best yields obtained in these experiments were about 5.5-6.0 t ha−1 and these yields are consistent with a decade-long attainable yield identified for wheat in rice-wheat rotation for Haryana. If farmers can achieve market recognition for chapatti quality, and with the use of appropriate varieties, then farmers can assume that the best practice outlined here for optimising grain yield with integrated nutrient and soil management will be the same practice that optimises chapatti quality.  相似文献   

13.
SUMMARY

Increasing atmospheric CO2 concentrations [CO2] have the potential to enhance growth and yield of agricultural plants. Con-comitantly plants grown under high [CO2] show significant changes of the chemical composition of their foliage and of other plant parts. Particularly, high [CO2] result in a decrease of plant nitrogen (N) concentration, which may have serious consequences for crop quality. This presentation summarizes the results of a variety of CO2 enrichment studies with pasture plants (Lolium spp., Trifolium repens) and cereal species (Triticum aestivum, Hordeum vulgare) which were conducted at our laboratory under different growth and CO2 exposure conditions ranging from controlled environment studies to investigations under free air carbon dioxide enrichment (FACE). With the exception of clover in all experiments a CO2-induced decline of forage and grain N concentration was observed. The magnitude of this reduction differed between species, cultivars, management conditions (N fertilization) and CO2 exposure conditions. No unambiguous evidence was obtained whether N fertilization can contribute to meet the quality requirements for cereals and grass monocultures with respect to tissue N concentrations in a future high-CO2 world. As shown in the FACE experiments current application rates of N fertilizers are inadequate to achieve quality standards.  相似文献   

14.
Increasing global atmospheric CO2 concentrations are expected to influence crop production. To investigate the effect on rice (Oryza sativa L.), plants were grown under ambient CO2 (AMB) or free-air CO2-enrichment (FACE) at CO2 concentrations ranged from 275 to 365 μmol mol−1 above AMB. We supplied 13CO2 to the plants at different growth stages so we could examine the contribution of carbohydrate stored during the vegetative stage or newly fixed carbohydrate produced during the grain-filling stage to ear weight at grain maturity. In plants supplied with 13C at the panicle-initiation or pre-heading stages, plants grown under FACE had more starch in the stems at heading, but there was no difference in stem 13C content. Furthermore, there were no differences between treatments in whole-plant 13C contents at heading and grain maturity. In contrast, plants supplied with 13C at the grain-filling stage had more 13C in the whole plant and the ears at grain maturity under FACE than under AMB, indicating that the increased amount of photosynthate produced at the grain-filling stage under CO2 enrichment might be effectively stored in the grains. Furthermore, regardless of when the 13C was supplied, plants had more 13C in starch in the ears at grain maturity under FACE than under AMB. Therefore, CO2 enrichment appears to promote partitioning of photosynthate produced during both vegetative and grain-filling stages to the grains.  相似文献   

15.
In order to investigate the intra-specific variation of wheat grain quality response to elevated atmospheric CO2 concentration (e[CO2]), eight wheat (Triticum aestivum L.)cultivars were grown at two CO2 concentrations ([CO2]) (current atmospheric, 389 CO2 μmol mol−1vs. e[CO2], FACE (Free-Air CO2 Enrichment), 550  ±  10% CO2 μmol mol−1), at two water levels (rain-fed vs. irrigated) and at two times of sowing (TOS1, vs. TOS2). The TOS treatment was mainly imposed to understand whether e[CO2] could modify the effects of timing of higher grain filling temperatures on grain quality. When plants were grown at TOS1, TKW (thousand kernel weight), grain test weight, hardness index, P, Ca, Na and phytate were not significantly changed under e[CO2]. On the other hand, e[CO2] increased TKW (16%), hardness index (9%), kernel diameter (6%), test weight (2%) but decreased grain protein (10%) and grain phytate (11%) at TOS2. In regard to grain Zn, Mn and Cu concentrations and some flour rheological properties, cultivar specific responses to e[CO2] were observed at both sowing times. Observed genetic variability in response to e[CO2] in terms of grain minerals and flour rheological properties could be easily incorporated into future wheat breeding programs to enable adaptation to climate change.  相似文献   

16.
Nitrogen uptake,fixation and response to fertilizer N in soybeans: A review   总被引:2,自引:0,他引:2  
Although relationships among soybean (Glycine max [L.] Merr) seed yield, nitrogen (N) uptake, biological N2 fixation (BNF), and response to N fertilization have received considerable coverage in the scientific literature, a comprehensive summary and interpretation of these interactions with specific emphasis on high yield environments is lacking. Six hundred and thirty-seven data sets (site–year–treatment combinations) were analyzed from field studies that had examined these variables and had been published in refereed journals from 1966 to 2006. A mean linear increase of 0.013 Mg soybean seed yield per kg increase in N accumulation in aboveground biomass was evident in these data. The lower (maximum N accumulation) and upper (maximum N dilution) boundaries for this relationship had slopes of 0.0064 and 0.0188 Mg grain kg−1 N, respectively. On an average, 50–60% of soybean N demand was met by biological N2 fixation. In most situations the amount of N fixed was not sufficient to replace N export from the field in harvested seed. The partial N balance (fixed N in aboveground biomass − N in seeds) was negative in 80% of all data sets, with a mean net soil N mining of −40 kg N ha−1. However, when an average estimated belowground N contribution of 24% of total plant N was included, the average N balance was close to neutral (−4 kg N ha−1). The gap between crop N uptake and N supplied by BNF tended to increase at higher seed yields for which the associated crop N demand is higher. Soybean yield was more likely to respond to N fertilization in high-yield (>4.5 Mg ha−1) environments. A negative exponential relationship was observed between N fertilizer rate and N2 fixation when N was applied on the surface or incorporated in the topmost soil layers. Deep placement of slow-release fertilizer below the nodulation zone, or late N applications during reproductive stages, may be promising alternatives for achieving a yield response to N fertilization in high-yielding environments. The results from many N fertilization studies are often confounded by insufficiently optimized BNF or other management factors that may have precluded achieving BNF-mediated yields near the yield potential ceiling. More studies will be needed to fully understand the extent to which the N requirements of soybean grown at potential yields levels can be met by optimizing BNF alone as opposed to supplementing BNF with applied N. Such optimization will require evaluating new inoculant technologies, greater temporal precision in crop and soil management, and most importantly, detailed measurements of the contributions of soil N, BNF, and the efficiency of fertilizer N uptake throughout the crop cycle. Such information is required to develop more reliable guidelines for managing both BNF and fertilizer N in high-yielding environments, and also to improve soybean simulation models.  相似文献   

17.
Groundnut as a pre-rice crop is usually harvested 1–2 months before rice transplanting. During this lag phase much of N in groundnut residues could be lost due to rapid N mineralization. Mixing of abundantly available rice straw with groundnut residues may be a means for reducing N and improve subsequent crop yields. The objectives of this experiment were to investigate the effect of mixing groundnut residues and rice straw in different proportions on (a) growth and yield of succeeding rice, (b) groundnut residue N use efficiency and (c) N lost (15N balance) from the plant–soil system and fate of residue N in soil fractions. The experiment consisted of six treatments: (i) control (no residues), (ii) NPK (at recommended rate, 38 kg N ha−1), (iii) groundnut residues 5 Mg ha−1 (120 kg N ha−1), (iv) rice straw 5 Mg ha−1 (25 kg N ha−1), (v) 1:0.5 mixed (groundnut residues 5 Mg: rice straw 2.5 Mg ha−1), and (vi) 1:1 mixed (groundnut residues 5 Mg: rice straw 5 Mg ha−1). After rice transplanting, samples of the lowland rice cultivar KDML 105 were periodically collected to determine growth and nutrient uptake. At final harvest, dry weight, nutrient contents and 15N recovery of labeled groundnut residues were evaluated.  相似文献   

18.
Variety and nitrogen (N) fertilizer input are the two main factors that influence the development of sheath blight (ShB) caused by Rhizoctonia solani in intensive and high-input rice (Oryza sativa L.) production systems. This study was conducted to determine the varietal difference in ShB development and its association with yield loss across N rates. Two indica inbred and two indica/indica F1 hybrid varieties were grown under 0 and 90 kg N ha−1 in 2003 wet season (WS) and under 0, 75, 145, and 215 kg N ha−1 in 2004 dry season (DS). Inoculation was done in 3.2 m2 in each experiment unit to achieve uniform disease development. Disease intensity was quantified by measuring relative lesion height (RLH) and ShB index (ShBI) of inoculated 10 hills at flowering and 14 days after flowering. Plant traits, grain yield, temperature, and relative humidity inside the canopy were also measured. Consistent and significant varietal differences in ShB intensity were observed across N rates in both WS and DS. Among the four varieties, IR72 and IR75217H had higher RLH and ShBI than PSBRc52 and IR68284H at all N rates. Sheath blight index at 14 days after flowering had the closest correlation with yield loss from ShB. Varieties with taller stature, fewer tillers, and lower leaf N concentration such as IR68284H generally had lower RLH and ShBI, and consequently lower yield loss from the disease. Disease intensity and yield loss from ShB increased with increasing N rates, but the magnitude of yield loss varied among varieties. This suggests that fertilizer N should be managed more precisely and differently for varieties with different plant type in order to reduce the disease development and maximize grain yield in the irrigated rice systems.  相似文献   

19.
We investigated wheat (Triticum aestivum) grain quality under Free Air CO2 Enrichment (FACE) of 550 ± 10% CO2 μmol mol−1. In each of two full growing seasons (2008 and 2009), two times of sowing were compared, with late sowing designed to mimic high temperature during grain filling. Grain samples were subjected to a range of physical, nutritional and rheological quality assessments. Elevated CO2 increased thousand grain weight (8%) and grain diameter (5%). Flour protein concentration was reduced by 11% at e[CO2], with the highest reduction being observed at the late time of sowing in 2009, (15%). Most of the grain mineral concentrations decreased under e[CO2] - Ca (11%), Mg (7%), P (11%) and S (7%), Fe (10%), Zn (17%), Na (19%), while total uptake of these nutrients per unit ground area increased. Rheological properties of the flour were altered by e[CO2] and bread volume reduced by 7%. Phytate concentration in grains tended to decrease (17%) at e[CO2] while grain fructan concentration remained unchanged. The data suggest that rising atmospheric [CO2] will reduce the nutritional and rheological quality of wheat grain, but at high temperature, e[CO2] effects may be moderated. Reduced phytate concentrations at e[CO2] may improve bioavailability of Fe and Zn in wheat grain.  相似文献   

20.
Widening the range of organic nutrient resources, especially N sources, is a major challenge for improving crop productivity of smallholder farms in southern Africa. A study was conducted over three seasons to evaluate different species of indigenous legumes for their biomass productivity, N2-fixation and residual effects on subsequent maize crops on nutrient-depleted fields belonging to smallholder farmers under contrasting rainfall zones in Zimbabwe. Under high rainfall (>800 mm yr−1), 1-year indigenous legume fallows (indifallows), comprising mostly species of the genera Crotalaria, Indigofera and Tephrosia, yielded 8.6 t ha−1 of biomass within 6 months, out-performing sunnhemp (Crotalaria juncea L.) green manure and grass (natural) fallows by 41% and 74%, respectively. A similar trend was observed under medium (650–750 mm yr−1) rainfall in Chinyika, where the indifallow attained a biomass yield of 6.6 t ha−1 compared with 2.2 t ha−1 for natural fallows. Cumulatively, over two growing seasons, the indifallow treatment under high rainfall at Domboshawa produced biomass as high as 28 t ha−1 compared with ∼7 t ha−1 under natural fallow. The mean total N2 fixed under indifallows ranged from 125 kg ha−1 under soils exhibiting severe nutrient depletion in Chikwaka, to 205 kg ha−1 at Domboshawa. Indifallow biomass accumulated up to 210 kg N ha−1, eleven-fold higher than the N contained in corresponding natural fallow biomass at time of incorporation. Application of P to indifallows significantly increased both biomass productivity and N2-fixation, translating into positive yield responses by subsequent maize. Differences in maize biomass productivity between indifallow and natural fallow treatments were already apparent at 2 weeks after maize emergence, with the former yielding significantly (P < 0.05) more maize biomass than the latter. The first maize crop following termination of 1-year indifallows yielded grain averaging 2.3 t ha−1, significantly out-yielding 1-year natural fallows by >1 t ha−1. In the second season, maize yields were consistently better under indifallows compared with natural fallows in terms of both grain and total biomass. The first maize crop following 2-year indifallows yielded ∼3 t ha−1 of grain, significantly higher than the second maize crop after 1-year indifallows and natural fallows. The study demonstrated that indigenous legumes can generate N-rich biomass in sufficient quantities to make a significant influence on maize productivity for more than a single season. Maize yield gains under indifallow systems on low fertility sandy soils exceeded the yields attained with either mineral fertilizer alone or traditional green manure crop of sunnhemp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号