首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is the most important constraint reducing rice yield in rainfed areas. Earlier efforts to improve rice yield under drought mainly focused on improving secondary traits because the broad-sense heritability (H) of grain yield under drought stress was assumed to be low, however gains in yield by selecting for secondary traits have not been clearly demonstrated in rice. In present study, the effectiveness of direct selection for grain yield was assessed under lowland reproductive stage stress at Raipur in eastern India and under upland reproductive stage drought stress at IRRI. The selection under severe stress (in both upland and lowland trials) resulted in greater gains under similar stress levels (yield reduction of 65% or greater under stress) in evaluation experiments than did selection under non-stress conditions, with no yield reduction under non-stress conditions. We observed similar H of grain yield under stress and non-stress conditions, indicating direct selection for yield under drought will be effective under both lowland and upland drought stresses. None of the secondary traits (panicle exsertion, harvest index, leaf rolling, leaf drying) included in our study showed a higher estimate for H than grain yield under stress. Secondary traits as well as indirect selection for grain yield under non-stress situation were predicted to be less effective in improving yield under drought in both lowland and upland ecosystem than direct selection for grain yield under the respective stress situations. The low, but positive values observed for genetic correlation (rG) between yield under stress and non-stress indicated that it is possible to combine drought tolerance with high-yield potential but low values also indicated that selection for grain yield needs to be carried under stress environments. The study also indicated that under lowland drought stress, the use of highly drought-tolerant donors, as parents in crosses to high yielding but susceptible varieties resulted in a much higher frequency of genotypes combining high-yield potential with tolerance than did crosses among elite lines with high-yield potential but poor tolerance. Breeding strategies that use drought-tolerant donors and that combine screening for yield under managed drought stress with screening for yield potential are likely to result in the development of improved cultivars for drought-prone rainfed rice producing areas.  相似文献   

2.
《Field Crops Research》2002,73(2-3):169-180
Drought frequently reduces grain yield of rainfed lowland rice. A series of experiments were conducted in drought-prone northeast Thailand to study the magnitude and consistency of yield responses of diverse, rainfed lowland rice genotypes to drought stress environments and to examine ways to identify genotypes that confer drought resistance. One hundred and twenty-eight genotypes were grown under non-stress and four different types of drought stress conditions. The relationship of genotypic variation in yield under drought conditions to genetic yield potential, flowering time and flowering delay, and to a drought response index (DRI) that removed the effect of potential yield and flowering time on yield under stress was examined.Drought stress that developed prior to flowering generally delayed the time of flowering of genotypes, and the delay in flowering was negatively associated with grain yield, fertile panicle percentage and filled grain percentage. Genotypes with a longer delay in flowering time had extracted more water during the early drought period, and as a consequence, had higher water deficits. They were consistently associated with a larger yield reduction under drought and in one experiment with a smaller DRI. Genotypes, however, responded differently to the different drought stress conditions and there was no consistency in the DRI estimates for the different genotypes across the drought stress experiments. The results indicate that with the use of irrigated-control and drought test environments, genotypes with drought resistance can be identified by using DRI or delay in flowering. However, selections will differ depending on the type of drought condition. The inconsistency of the estimates in DRI and flowering delay across different drought conditions reflects the nature of the large genotype-by-environment interactions observed for grain yield under various types of drought in rainfed lowland conditions.  相似文献   

3.
FUNAABOR-2 is a popular Ofada rice variety grown in a large area under rainfed upland condition across western states of Nigeria. We used the combination of phenotypic and marker-assisted selection(MAS) to improve grain yield of FUNAABOR-2 under drought stress(DS) at the reproductive stage via introgression of two drought quantitative trait loci(QTLs), qDTY12.1 and qDTY2.3. Foreground selection was carried out using peak markers RM511 and RM250, associated with qDTY12.1 and qDTY2.3, respectively, followed by recombinant selection with RM28099 and RM1261 distally flanking qDTY12.1. Furthermore, BC1 F2-derived introgressed lines and their parents were evaluated under DS and non-stress(NS) conditions during the 2015–2016 dry season. Overall reduction of grain yield under DS compared to NS was recorded. Introgressed lines with qDTY12.1 and qDTY2.3 combinations showed higher yield potential compared to lines with single or no QTL under DS, indicating significant positive interactions between the two QTLs under the FUNAABOR-2 genetic background. Pyramiding of qDTY12.1 and qDTY2.3 in the FUNAABOR-2 genetic background led to higher grain yield production under DS and NS.  相似文献   

4.
Drought stress is one of the major constraints affecting rice production and yield stability in the rainfed regions. To understand the physiological basis of drought resistance related component traits, we used a backcross inbred population of rice under three kinds of moisture regimes viz., non-stress, moderate (24.48%) and severe stress (73.97%) conditions which reflect the differential responses of the genotypes to varying stress intensities. The plot yield, 1000-grain weight, panicle exsertion and canopy air temperature difference exhibited high heritability under the control conditions, whereas spikelet sterility and single plant yield exhibited high heritability under the moderate stress conditions. Traits such as days to 50% flowering, plant height and osmotic potential showed high heritability under the severe stress conditions. Plot yield under stress was significantly and positively correlated with harvest index and 1000-grain weight, but negatively associated with leaf rolling score and days to 50% flowering. The drought susceptibility index and drought response index were negatively correlated between each other both under the moderate and severe stress conditions. The derived traits viz., difference in panicle length between the control and the severe stress was associated with osmotic adjustment measured under field conditions. Difference in plant height and panicle length was negatively associated with plot yield under stress.  相似文献   

5.
《Plant Production Science》2013,16(3):334-337
Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the staple cereal of the hottest, driest areas of the tropics and subtropics. Drought stress is a regular occurrence in these regions, making stress tolerance an essential attribute of new pearl millet cultivars. Recent breeding research has mapped several quantitative trait loci (QTLs) for components of grain and stover yield per se, as well as yield maintenance, under terminal drought stress conditions. We report here the evaluation of these QTLs as possible selection criteria for improving stress tolerance of an elite hybrid cultivar. Initial evaluations, based on hybrids made with topcross pollinators bred from lines selected directly from the mapping population, indicated an advantage to the QTL-based topcross hybrids. This advantage seemed to be related to a particular plant phenotype that was similar to that of the drought tolerant parent of the mapping population. Subsequent evaluations were based on testcross hybrids of drought tolerance QTL introgression lines in the background of the drought-sensitive parent of the mapping population, H 77/833-2. These introgression lines were bred by limited marker-assisted backcrossing of a putative major drought tolerance QTL into H 77/833-2 from the mapping population’s drought tolerant parent. Several of these QTL introgression lines had a significant positive general combining ability for grain yield under terminal stress and significantly out-yielded testcross hybrids made with the original recurrent parent both in unrelieved terminal drought stress and in gradient stress evaluations.  相似文献   

6.
Drought is a major constraint for rice production and yield stability in rainfed ecosystems, especially when it occurs during the reproductive stage. Combined genetic and physiological analysis of reproductive-growth traits and their effects on yield and yield components under drought stress is important for dissecting the biological bases of drought resistance and for rice yield improvement in water-limited environments. A subset of a doubled haploid (DH) line population of CT9993-5-10-1-M/IR62266-42-6-2 was evaluated for variation in plant water status, phenology, reproductive-growth traits, yield and yield components under reproductive-stage drought stress and irrigated (non-stress) conditions in the field. Since this DH line population was previously used in extensive quantitative trait loci (QTLs) mapping of various drought resistance component traits, we aimed at identifying QTLs for specific reproductive-growth and yield traits and also to validate the consensus QTLs identified earlier in these DH lines using meta-analysis. DH lines showed significant variation for plant water status, reproductive-growth traits, yield and yield components under drought stress. Total dry matter, number of panicles per plant, harvest index, panicle harvest index, panicle fertility, pollen fertility, spikelet fertility and hundred grain weight had significant positive correlations with grain yield under drought stress. A total of 46 QTLs were identified for the various traits under stress and non-stress conditions with phenotypic effect ranging from 9.5 to 35.6% in this study. QTLs for panicle exsertion, peduncle length and pollen fertility, identified for the first time in this study, could be useful in marker-assisted breeding (MAB) for drought resistance in rice. A total of 97 QTLs linked to plant growth, phenology, reproductive-growth traits, yield and its components under non-stress and drought stress, identified in this study as well as from earlier published information, were subjected to meta-analysis. Meta-analysis identified 23 MQTLs linked to plant phenology and production traits under stress conditions. Among them, four MQTLs viz., 1.3 for plant height, 3.1 for days to flowering, 8.1 for days to flowering or delay in flowering and 9.1 for days to flowering are true QTLs. Consensus QTLs for reproductive-growth traits and grain yield under drought stress have been identified on chromosomes 1 and 9 using meta-QTL analysis in these DH lines. These MQTLs associated with reproductive-growth, grain yield and its component traits under drought stress could be useful targets for drought resistance improvement in rice through MAB and/or map-based positional analysis of candidate genes.  相似文献   

7.
《Field Crops Research》2002,73(2-3):181-200
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions.Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r=−0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system.Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period.Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely.Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se.  相似文献   

8.
Near isogenic lines carrying large-effect QTL (qtl12.1), which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments, were evaluated under water stress in the fields. The line which gave higher yield under drought was crossed with a local elite line, PMK3, and forwarded to F2:3 generation. Significant variation was found among the F2:3 lines for agronomic traits under water stress in the fields. Low to high broad sense heritability (H) for investigated traits was also found. Water stress indicators such as leaf rolling and leaf drying were negatively correlated with plant height, biomass and grain yield under stress. Bulked segregant analysis (BSA) was performed with the markers in the vicinity of qtl12.1, and RM27933 was found to be segregated perfectly well in individual components of drought resistant and drought susceptible bulks which were bulked based on yield under water stress among F2:3 lines. Hence, this simple and breeder friendly marker, RM27933, may be useful as a potentially valuable candidate marker for the transfer of the QTL qtl12.1 in the regional breeding program. Bioinformatic analysis of the DNA sequence of the qtl12.1 region was also done to identify and analyze positional candidate genes associated with this QTL and to ascertain the putative molecular basis of qtl12.1.  相似文献   

9.
Drought stress is the most important abiotic factor limiting upland rice yields. Identification of quantitative trait loci (QTL) conferring improved drought resistance may facilitate breeding progress. We previously mapped a QTL with a large effect on grain yield under severe drought stress (qtl12.1) in the Vandana/Way Rarem population. In the current paper, we present results from a series of experiments investigating the physiological mechanism(s) by which qtl12.1 affects grain yield under drought conditions. We performed detailed plant water status measurements on a subset of lines having similar crop growth duration but contrasting genotypes at qtl12.1 under field (24 genotypes) and greenhouse (14 genotypes) conditions. The Way Rarem-derived allele of qtl12.1 was confirmed to improve grain yield under drought mainly through a slight improvement (7%) in plant water uptake under water-limited conditions. Such an apparently small increase in water uptake associated with this allele could explain the large effect on yield observed under field conditions. Our results suggest that this improvement of plant water uptake is likely associated with improved root architecture.  相似文献   

10.
Identification of genetic factors controlling traits associated with seed germination under drought stress conditions, leads to identification and development of drought tolerant varieties. Present study by using a population of F2:, derived from a cross between a drought tolerant variety, Gharib (indica) and a drought sensitive variety, Sepidroud (indica), is to identify and compare QTLs associated with germination traits under drought stress and non-stress conditions. Through QTL analysis, using composite interval mapping, regarding traits such as germination rate (GR), germination percentage (GP), radicle length (RL), plumule length (PL), coleorhiza length (COL) and coleoptile length (CL), totally 13 QTLs were detected under pole drought stress (-8 MPa poly ethylene glycol 6000) and 9 QTLs under non-stress conditions. Of the QTLs identified under non-stress conditions, QTLs associated with COL (qCOL-5) and GR (qGR-1) explained 21.28% and 19.73% of the total phenotypic variations, respectively Under drought stress conditions, QTLs associated with COL (qCOL-3) and PL (qPL-5) explained 18.34% and 18.22% of the total phenotypic variations, respectively. A few drought-tolerance-related QTLs identified in previous studies are near the QTLs detected in this study, and several QTLs in this study are novel alleles. The major QTLs like qGR-1, qGP-4, qRL-12 and qCL-4 identified in both conditions for traits GR, GP, RL and CL, respectively, should be considered as the important and stable trait-controlling QTLs in rice seed germination. Those major or minor QTLs could be used to significantly improve drought tolerance by marker-assisted selection in rice.  相似文献   

11.
Abstract

Drought is the major constraint to rice production in rainfed areas across Asia and sub-Saharan Africa. In the context of current and predicted water scarcity, increasing irrigation is generally not a viable option for alleviating drought problems in rainfed rice-growing systems. It is therefore critical that genetic management strategies for drought focus on maximum extraction of available soil moisture and its efficient use in crop establishment and growth to maximize biomass and yield. Extensive genetic variation for drought resistance exists in rice germplasm. However, the current challenge is to decipher the complexities of drought resistance in rice and exploit all available genetic resources to produce rice varieties combining drought adaptation with high yield potential, quality, and resistance to biotic stresses. The strategy described here aims at developing a pipeline for elite breeding lines and hybrids that can be integrated with efficient management practices and delivered to rice farmers. This involves the development of high-throughput, high-precision phenotyping systems to allow genes for yield components under stress to be efficiently mapped and their effects assessed on a range of drought-related traits, and then moving the most promising genes into widely grown rice mega-varieties, while scaling up gene detection and delivery for use in marker-aided breeding.  相似文献   

12.
Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL, qDTY12.1, along with two major blast resistance genes i.e. Pi54 and Pi1 through marker-assisted backcross breeding. Both traits were transferred till BC2 generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY12.1), RM206 for Pi54 and RM224 for Pi1. Extensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having qDTY12.1 and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%-96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.  相似文献   

13.
Drought is a major production constraint in rainfed rice (Oryza sativa L.). Lack of effective selection criteria is a major limitation hampering progress in breeding for drought tolerance. In an earlier report, we showed in two populations that one cycle of direct selection was effective in increasing grain yield under stress. In the present study, we retested the efficiency of direct selection for grain yield under drought stress in rice using four populations derived from crossing upland-adapted, drought-tolerant varieties (Apo, Vandana) to high-yielding, lowland-adapted, drought-susceptible varieties (IR64, IR72). Each population was subjected to two cycles of divergent selection either under drought stress in upland or under nonstress conditions in lowland conditions. Following selection, approximately 40 high-yielding lines selected under each protocol from each population, along with a set of unselected lines, were evaluated in a series of selection response trials over a range of moisture levels. Significant response to direct selection under stress was realized in 9 out of 15 combinations of populations and stress environments, and in 6 of the 7 severe stress trials. Averaging over all the populations and stress environments, the stress-selected lines had a yield advantage of 25 and 37% over nonstress-selected and random lines, respectively. In contrast to this, under nonstress, the nonstress-selected lines had an average yield advantage of only 7 and 13% over stress-selected and random lines, respectively. Direct selection in managed stress trials during dry seasons gave significant response (25% on average relative to indirect selection in nonstress conditions) under naturally occurring wet season stress. In addition, direct selection under stress in upland gave an average gain of 16 and 45% over nonstress-selected and random lines, respectively, under stress in lowland. The yield advantage of the stress-selected lines appears to result mainly from maintenance of higher harvest index. These results show that direct selection for grain yield under stress is effective and does not reduce yield potential. Overall, this is the first report in rice demonstrating that (a) selection under managed drought stress in the dry season can result in yield gains under natural stress in the wet season, and (b) that selection under upland drought stress can, at least under the conditions of the present study, result in gains under lowland drought conditions.  相似文献   

14.
《Field Crops Research》1995,40(2):67-86
Drought is a major problem for rice grown under rainfed lowland and upland conditions, but progress in breeding to improve drought resistance has been slow. This paper describes patterns of water-stress development in rice fields, reviews genetic variation in physio-morphological traits for drought resistance in rice, and suggests how knowledge of stress physiology can contribute to plant breeding programmes that aim to increase yield in water-limiting environments. To provide a basis for integrating physiological research with plant-breeding objectives we define drought resistance in terms of relative yield of genotypes. Therefore, a drought-resistant genotype will be one which has a higher grain yield than others when all genotypes are exposed to the same level of water stress.A major reason for the slow progress in breeding for drought resistance in rice is the complexity of the drought environment, which often results in the lack of clear identification of the target environment(s). There is a need to identify the relative importance of the three common drought types; early-season drought which often causes delay in transplanting, mild intermittent stress which can have a severe cumulative effect, and late stress which affects particularly late-maturing genotypes. In addition, in rainfed lowland rice, flooded and non-flooded soil conditions may alternate during the growing season, and affect nutrient availability or cause toxicity.Several drought-resistance mechanisms, and putative traits which contribute to them, have been identified for rice; important among these being drought escape via appropriate phenology, root characteristics, specific dehydration avoidance and tolerance mechanisms, and drought recovery. Some of these mechanisms/traits have been shown to confer drought resistance and others show potential to do so in rice. The most important is the appropriate phenology which matches crop growth and development with the water environment. A deep root system, with high root length density at depth is useful in extracting water thoroughly in upland conditions, but does not appear to offer much scope for improving drought resistance in rainfed lowland rice where the development of a hard pan may prevent deep root penetration. Under water-limiting environments, genotypes which maintain the highest leaf water potential generally grow best, but it is not known if genotypic variation in leaf water potential is solely caused by root factors. Osmotic adjustment is promising, because it can potentially counteract the effects of a rapid decline in leaf water potential and there is large genetic variation for this trait. There is genotypic variation in expression of green leaf retention which appears to be a useful character for prolonged droughts, but it is affected by plant size which complicates its use as a selection criterion for drought resistance.There is a general lack of drought related research for rice in rainfed lowland conditions. This needs to be rectified, particularly considering their importance relative to upland conditions in Asian countries. We suggest that focussing physiological-genetic research efforts onto clearly defined, major target environments should provide a basis for increasing the relevance of stress physiology and the efficiency of breeding programmes for development of drought-resistant genotypes.  相似文献   

15.
《Field Crops Research》2006,97(1):43-52
Traditionally, upland rice is grown in Asia in low-input, subsistence systems. More productive upland systems, using more fertilizer and improved varieties, are emerging in China and Philippines, and could contribute to productivity increases in rainfed environments in other countries. Here, we evaluate, on-station and on-farm, the yield under upland management of improved indica upland cultivars selected for yield under high-fertility conditions. These cultivars are compared with traditional and improved tropical japonica upland varieties, and with elite indica high-yielding varieties (HYV) developed for irrigated lowland production, to characterize the features of varieties that produce high yields in favorable upland environments. Forty-four improved and traditional varieties and experimental lines were evaluated in irrigated lowland, non-stressed upland, moderately stressed upland, severely water-stressed upland, and low-fertility upland environments in southern Luzon, Philippines. Correlations between yields in non-stress and mild-stress environments were low but positive. Some cultivars, like IR55423-01, were among the highest yielding under both conditions, indicating that high yield and moderate water-stress tolerance can be combined. Upland-selected indica varieties yielded 3.56 t ha−1 in favorable upland environments on-station in southern Luzon, outperforming improved tropical japonica and irrigated varieties by 23 and 69%, respectively. They were also the highest-yielding class in infertile, acid soils. The improved upland indica cultivars are about 110 cm tall under favorable upland conditions and maintain a harvest index of nearly 0.4, or about one-third higher than other cultivar types. The best upland-adapted rice varieties produced average yields on-farm of 3.3 and 4.1 t ha−1 in southern Luzon and Yunnan, respectively, outyielding traditional checks by 30–50% with moderate N application. Screening under both high-fertility, non-stress conditions and moderate reproductive-stage stress appears to be needed to develop cultivars combining high-yield potential with drought tolerance. Upland-adapted indica cultivars offer a new approach to increasing productivity and reducing risk in Asian rainfed rice systems.  相似文献   

16.
The association of specific target traits for drought resistance (early flowering, high accumulation of stem water soluble carbohydrate (WSC) reserves, presence of awns and high green flag-leaf area persistence) with yield performance under late-season drought was analyzed utilizing two doubled-haploid (DH) populations derived from crosses between Beaver × Soissons and Rialto × Spark in two seasons 2000/2001 and 2001/2002. The aim was to quantify associations between target traits and yield responses to drought, and to prioritize traits for drought resistance. Flowering time variation had a neutral effect on the absolute yield loss under drought, suggesting there may be a trade-off between water-saving behaviour in the shorter pre-flowering period with early flowering and a reduced capacity to access water associated with a smaller rooting system. The presence of awns also had a neutral effect on yield loss under drought amongst lines of the Beaver × Soissons population. The potential advantages of awns for increasing water-use efficiency and sensible heat transfer responsible for a cooler canopy appeared to be of less significance under moderate droughts in the UK than under severe droughts in other regions worldwide. The value of large stem soluble carbohydrate reserves for drought environments alone could not be confirmed in the UK environment. Stem WSC was positively associated with grain yield under both irrigation and drought. The genetic trait which showed the clearest correlation with the ability to maintain yield under drought was green flag-leaf area persistence. Averaged across years, the positive phenotypic correlation of this trait with yield under drought amongst DH lines of the Beaver × Soissons population (r = 0.49; p ≤ 0.001) indicated the potential use of this trait as a selection criterion for yield under drought. It is suggested that screens for this trait including marker-assisted selection would have value in future breeding programmes aimed at improving yields in high yielding, rainfed environments, but where drought can also be a problem, such as the UK.  相似文献   

17.
《Field Crops Research》2006,97(1):77-86
A large-scale backcross breeding project has been undertaken to improve drought tolerance in rice. Over 160 donor cultivars from 25 countries have been used in this project, representing a significant proportion of the genetic variation in cultivated rice. These cultivars were evaluated in field experiments in the Philippines to assess their responses to drought in terms of plant height, heading date, and grain yield. Drought was imposed near heading stage, in experiments that were established either in lowland (anaerobic) fields or upland (aerobic) soil. Despite the poor adaptation of some cultivars to the tropics, it was possible to identify significant variation in plant response to drought treatments, and contrasting effects on flowering delay and growth. Subsequently, 325 BC2F2 bulk populations, developed by backcrossing many of these donors to one of three elite recurrent parents, were screened under drought in lowland or upland nurseries. Stress levels were managed to eliminate almost all seed set in recurrent parents, and those progeny that produced grain were selected as being putatively drought-tolerant. The selection intensity varied across years and in selection environments with more severe stress, higher selection intensity could be imposed. The number of plants selected within a population was not associated with the per se drought response of the donors in the direct evaluation, indicating the wide presence of cryptic genetic variation for drought tolerance in the apparently drought-susceptible cultivars. The genetic background of the recurrent parent affected the number of plants selected, as did the selection environment (upland versus lowland nurseries). These drought-selected introgression lines represent a useful genetic resource to develop improved cultivars for farmers in rainfed or water-scarce rice-growing regions, and also to improve our understanding of the genetic and molecular basis of drought tolerance in rice. Genetic analysis of the selected lines, reported elsewhere, indicated specific regions of high introgression. Yield evaluations of the selected lines are now underway across a range of drought scenarios.  相似文献   

18.
Pearl millet (Pennisetum glaucum) is cultivated across a wide range of environments ranging from extremely stressful to favourable. The objective of this research was to compare methods to identify productive cultivars for stress and non-stress conditions. Thirty pearl millet cultivars were evaluated at 22 locations that were grouped as stress, non-stress, or intermediate environments. Five selection indices viz., arithmetic mean (AM), geometric mean (GM), AM (standard units), stress susceptibility index (S) and drought response index (DRI) were calculated for each genotype to determine correlation between selection indices and yield under stress (YS), non-stress (YNS), and average conditions (YAV). Both cultivars and locations were significant sources of variation. Phenology of cultivars had different influence on yielding ability in contrasting environments. While earliness was advantageous for stress conditions, cultivars with longer duration tended to yield more under non-stress conditions. YS was only moderately determined by YNS. Both AM and GM were suitable indices for selection of cultivars that would perform well across stress, non-stress, and intermediate environments. Stress susceptibility index (S) was negatively correlated with YS (r=−0.62**) but should only be used as a selection criterion in combination with yield under stress (YS) to identify cultivars adapted to stress environments. DRI was positively correlated with YS but had no association with YNS. Results indicated that DRI might be useful for identifying cultivars with high performance under stress particularly when days to flower differ considerably among test entries.  相似文献   

19.
Fifteen experiments testing seven sets of genotypes under irrigated non-stress and drought stress situations were conducted from 2004 to 2006 with the objective to study the effect of different severity levels of drought on tolerant and susceptible advanced breeding lines, current varieties, and traditional and improved donors, and to study the effect of selection for high early vigor on yield. With the onset of drought, a yield reduction due to a decrease in biomass was observed in both susceptible and tolerant lines. However, after an initial reduction in yield, tolerant lines were able to sustain a yield loss more effectively than susceptible lines by better maintenance of biomass and higher harvest index. Under intermittent drought stress, genotypes with the ability to maintain higher biomass, reflected in terms of high early vigor recorded 3 wk after transplanting, recorded higher grain yield than genotypes with low early vigor. Lines with high early vigor yielded higher under both irrigated non-stress and intermittent drought stress situations. Under intermittent stress, plants with high vigor, low vigor, or random plants with high or low vigor coming from tolerant × susceptible crosses yielded higher than did the plants with the same vigor coming from susceptible × susceptible crosses. Under both irrigated non-stress and intermittent drought stress situations, early vigor showed significant genetic correlation with grain yield and could be included as an efficient selection criterion to improve yield in the lowlands.  相似文献   

20.
《Field Crops Research》2004,88(1):11-19
Drought is recognized as a primary constraint for rainfed rice production. In this study, the spatial distribution of heading date of rainfed rice and its relation to field water conditions were investigated for 2 years in mini-watersheds called Nong in Northeast Thailand, in order to clarify the toposequential variation in the degree of water stress of rice. Although the difference in the relative field elevation in the mini-watersheds was only a few meters, the water availability in terms of standing water and soil moisture markedly decreased with ascending elevation. Rice cultivars, KDML 105 and RD 6, the two dominant genotypes in Northeast Thailand, reached the heading stage at nearly the same day in the absence of water stress, independent of transplanting or seeding date under customary management. As the water availability decreased with ascending field elevation, the heading date of rice was markedly delayed. The delay seemed to be related to the cumulative water stress before heading of rice. The rice harvest index and yield at farmers’ fields decreased linearly with the delay of heading. The observed toposequential distribution of heading date indicated that quite severe water stress was imposed in the uppermost fields of the mini-watersheds, while practically no water stress occurred in the lower fields, at least in the lower half of the mini-watersheds. These results suggest that the delay of heading is a good index for rice water stress in rice in Northeast Thailand and can be applicable to field classification with respect to drought risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号