首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A weedy form of the genus Beta, i.e. Beta vulgaris ssp. vulgaris (hence “weed beet”) frequently found in sugar beet is impossible to eliminate with herbicides because of its genetic proximity to the crop. It is presumed to be the progeny of accidental hybrids between sugar beet (ssp. vulgaris) and wild beet (ssp. maritima), or of sugar beet varieties sensitive to vernalization and sown early in years with late cold spells. In this context, genetically modified (GM) sugar beet varieties tolerant to non-selective herbicides would be interesting to manage weed beet. However, because of the proximity of the weed to the crop, it is highly probable that the herbicide-tolerance transgene would be transmitted to the weed. To evaluate the likelihood of gene flow from GM varieties to weed beet and to propose cropping systems that reduce this likelihood, a model of the effects of cropping systems on population dynamics and gene flow in weed beet was developed, based on the existing spatio-temporal framework GENESYS and on field experiments for parametrising the life-cycle of weed beet. The resulting GENESYS-Beet model consists in simulating every year the life-cycle of weed and crop beet in each field of a given region. During flowering, the various life-cycles connect, leading to pollen exchanges which depend on field areas, shapes and distances. The life-cycle consists of a succession of life-stages for which both densities and genotype proportions are calculated. The relationships between the various stages depend on the crop grown in the field, the stage and genotype of the modelled crop relative, as well as the cultivation techniques (tillage tools and dates, sowing date and density, herbicides, mechanical and manual weeding, harvest date) used to manage the crop. Simulations of GM spread in different farms and regions and of the effects of weed management on the advent of GM beet were carried out to illustrate the possible uses of the model and the consequences of co-existing GM and non-GM crops.  相似文献   

2.
干旱胁迫对玉米产量和品质的影响研究   总被引:10,自引:4,他引:10  
干旱胁迫不仅影响玉米生长发育和产量,而且影响了玉米的子粒品质。研究结果表明,干旱胁迫对玉米产量的危害顺序为开花期干旱>孕穗期干旱>灌浆期干旱。干旱胁迫虽降低了玉米子粒产量,但使子粒有效养分含量提高。灌浆期干旱胁迫使子粒蛋白质中的各种氨基酸含量提高,孕穗期干旱胁迫使子粒蛋白质中的必需氨基酸含量下降。干旱胁迫使子粒脂肪中不饱和脂肪酸含量下降,饱和脂肪酸含量提高。  相似文献   

3.
Fumonisins are mycotoxins produced primarily by Fusarium verticillioides and Fusarium proliferatum on maize. These are secondary, carcinogenic metabolites and have been reported on maize worldwide. Field trials were conducted during 2010/2011 and 2011/2012 in six diverse maize production areas of South Africa to study the efficacy of an existing prophylactic fungicide regime for the control of foliar diseases, on the infection of grains of seven cultivars by fumonisin producing Fusarium spp. and fumonisin synthesis. Seven cultivars were selected to include both yellow and white, Bt and non-Bt and regionally adapted varieties. Azoxystrobin + difenoconazole (strobilurin, 200 g/L + triazole, 125 g/L) was applied 40–45 days after planting followed by flusilazole + carbendazim (silicone triazole, 125 g/L + benzimidazole, 250 g/L) with petroleum as adjuvant, 28–30 days later. Fumonisins in harvested kernels were analysed using High Performance Liquid Chromatography (HPLC) and fumonisin producing Fusarium spp. were quantified by means of quantitative Real Time PCR (qPCR). Mean natural colonisation of maize kernels by fumonisin producing Fusarium spp. was highest at Makhathini (33,696 pg/0.5 g of milled maize kernels) and the lowest at Potchefstroom (179 pg/0.5 g of milled maize kernels). Cultivars differed in susceptibility to fungal colonisation and fumonisin synthesis with PAN6P-110, DKC80-10 and CRN3505 proving most susceptible and LS8521B and DKC78-15B most resistant. Mean fumonisin contamination was highest at Makhathini (23.62 ppm) and lowest at Buffelsvlei (1.50 ppm). Analysis of variance showed no significant differences in colonisation of grain by fumonisin producing Fusarium spp. between sprayed and control treatments. Sprayed treatments had significantly higher fumonisin levels compared with unsprayed treatments. A highly significant cultivar × environment interaction was recorded for fungal colonisation. Highly significant environment × fungicide-treatment × cultivar interactions were recorded for fumonisin production. The strong interaction between cultivar and environment may be due to cultivar adaptation/behaviour under different environmental conditions. The use of a prophylactic fungicide spray regime for control of leaf diseases in maize did not reduce Fusarium ear rot in maize, however, significantly elevated fumonisin levels were recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号