首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erect panicle rice cultivars utilize solar energy effectively and have improved ecological growing conditions. Among such cultivars, Shennong265 has been grown successfully throughout Northern China. Nevertheless, no studies have yet examined the relationships between crop dry matter productivity, weather conditions, and nitrogen uptake of the erect panicle type rice cultivar in Japan. The objective of our study was to evaluate the productivity of erect panicle rice Shennong265 in Western Japan under varied conditions. Three rice cultivars, Shennong265, Nipponbare, and Takanari were grown in the field under different fertilizer and plant density conditions in Western Japan; using this information, we compared yield and growth characteristics of Shennong265 with those of Nipponbare and Takanari. Although Shennong265 had radiation use efficiency similar to that of the high yielding cultivar (Takanari) and much higher leaf nitrogen content than Takanari and Nipponbare, the average grain yield of Shennong265 grown under normal fertilizer and plant density conditions was approximately 6.9 t ha?1 as against 6.2 t ha?1 for Nipponbare and 9.6 t ha?1 for Takanari. These results suggest that, while Shennong265 has a high yield potential, the environmental conditions including climate, fertilizer, and planting period provided in this study were not suitable for achieving its maximum yield. The reduced performance of Shennong265 may be caused by insufficient fertilizer after heading and by shorter growth periods, as well as by the climate of Western Japan. Additional fertilizer application during the heading stage and earlier transplanting may be needed to obtain higher Shennong265 yields in Western Japan.  相似文献   

2.
《Plant Production Science》2013,16(2):176-184
Absract

High-yielding rice varieties require a large accumulation of N in panicles. The objectives of this study were to clarify the change in N allocation during the ripening period (Exp. 1) and to quantify the contribution of N absorbed during the ripening period to panicle N at maturity (Exp. 2) in the high-yielding variety Takanari in comparison with that in Nipponbare as a control. In Exp. 1, 15N-labeled N (15N) was applied at heading to investigate the distribution of newly absorbed N as well as the allocation of plant N. In Exp. 2, split 15N application was performed during the filling period to estimate the above contribution. In Exp. 1, the allocation of plant N and absorbed 15N to the panicles was larger and that to the leaves was smaller in Takanari than in Nipponbare during the ripening period, although Takanari accumulated more N at maturity. The difference in N allocation suggested that the difference in N demand in panicles would be larger than that in N uptake. In Exp. 2, the varietal difference in the grain filling duration was observed: Nipponbare accumulated little N in the panicles after 28 d after heading (DAH), while Takanari accumulated about a quarter of its panicle N during that time. An estimate showed that in Takanari, 13.5% of the panicle N was derived from N absorbed after 28 DAH. These results suggest that the utilization of newly absorbed N until a later period after heading is important for the achievement of high yields.  相似文献   

3.
In Argentina, delayed sowing causes a decrease in seed yield and in radiation use efficiency (RUE) of peanut crops (Arachis hypogaea L.), but it is not known if RUE reduction is mainly due to reduced temperature during late reproductive stages or to a sink limitation promoted by decreased seed number in these conditions. We analyzed seed yield determination and RUE dynamics of two cultivars (Florman and ASEM) in four irrigated field experiments (Expn) grown at three sites and five contrasting sowing dates (between 17 October and 21 December) in three growing seasons. An additional field experiment was performed with widely spaced plants (i.e. with no interference among them) to evaluate the effect of peg removal on RUE and leaf carbon exchange rate (CER). Seasonal dynamics of mean air temperature and irradiance, biomass production (total and pods), and intercepted photosynthetically active radiation (IPAR) were followed. Seed yield and seed yield components (pod number, seeds per pod, seed number and seed weight) were determined at final harvest. Crop growth rate (CGR) and pod growth rate (PGR) were computed for growth phases of interest. RUE values for crops sown until 14 November were 1.89–1.98 g MJ−1 IPAR, within the usual range. RUE decreased significantly for cv. Florman in the late sowing of Exp1 (29 November) and for both cultivars in Exp3 (21 December sowing). Across experiments, seed yield (4.5-fold variation relative to minimum) was strongly associated (r2 = 0.87, P < 0.0001) with variations in seed number (3.5-fold variation relative to minimum), and to a lesser extent (r2 ≤ 0.54, P ≤ 0.001) to variations in seed weight (1.9-fold variation relative to minimum). Seed number was positively related (P < 0.01) to CGR (r2 = 0.66) and to PGR (r2 = 0.72) during the R3–R6.5 phase (seed number determination window), while crop growth during the grain-filling phase (i.e. between R6.5 and final harvest) was positively associated with grain number (r2 = 0.80, P < 0.001). No association was found between RUE and mean air temperature, neither for the whole cycle nor for the phase between R6.5 and final harvest, which showed the largest temperature variation (16.4–22.4 °C) across experiments. Use of mean minimum temperature records (range between 13.8 and 18.5 °C) did no improve the relationship. However, grain-filling phase RUE showed a positive (r2 = 0.69, P = 0.003) linear response to seed number across experiments. This apparent sink limitation of source activity was consistent with the reduced RUE (from 2.73 to 1.42 g MJ−1 IPAR) and reduced leaf CER at high irradiance (from ca. 30 to 15 μmol m−2 s−1) for plants subjected to 75% peg removal.  相似文献   

4.
Hybrid rice cultivar plays an important role in rice production system due to its high yield potential and resistance to environmental stress. Quantification of its responses to rising CO2 concentration ([CO2]) will reduce our uncertainty in predicting future food security and assist in development of adaptation strategies. Using free air CO2 enrichment (FACE), we measured seasonal changes in growth and nitrogen (N) uptake of an inter-subspecific hybrid rice cultivar Liangyoupeijiu grown under two levels of [CO2] (ambient and elevated by 200 μmol mol−1) and two levels of N fertilization in 2005–2006. Average across the 2 years, FACE increased crop growth rate similarly by 22%, 24% and 23% in the periods from transplanting to panicle initiation (PI), PI to heading and heading to maturity, which was mainly attributed to an increase in green leaf area index rather than the greater net assimilation rate. Grain yield increased greatly under FACE as a result of similar contributions by panicle number per unit area, grain number per panicle and individual grain yield. Final aboveground N acquisition showed a 10.4% increase under FACE, which resulted from enhanced N uptake at both vegetative and reproductive growth stages. Compared with previous FACE studies on final productivity of two inbred japonica cultivars, inter-subspecific hybrid cultivar appears to profit more from elevated [CO2], which mainly resulted from its greater enhancement in photosynthetic production during reproductive growth due to a lack of N limitations late in the season.  相似文献   

5.
A number of field trials on rice productivity have demonstrated very high yield, but reported limited information on environmental factors. The objective of this study was to reveal the environmental factors associated with high rice productivity in the subtropical environment of Yunnan, China. We conducted cross-locational field experiments using widely different rice varieties in Yunnan and in temperate environments of Kyoto, Japan in 2002 and 2003. The average daily radiation throughout the growing season was greater at Yunnan (17.1 MJ m−2 day−1 average over 2 years) relative to Kyoto (13.2 MJ m−2 day−1). The average daily temperature throughout the growing season was 24.7 °C at Yunnan, and 23.8 °C at Kyoto. The highest yield (16.5 tonnes ha−1) was achieved by the F1 variety Liangyoupeijiu at Yunnan in 2003, and average yield of all varieties was 33% and 39% higher at Yunnan relative to Kyoto in 2002 and 2003, respectively. There was a close correlation between grain yield and aboveground biomass at maturity, while there was little variation in the harvest index among environments. Large biomass accumulation was mainly caused by intense incident radiation at Yunnan, as there was little difference in crop radiation use efficiency (RUE) between locations. Large leaf area index (LAI) was also suggested to be an important factor. Average nitrogen (N) accumulation over 2 years was 49% higher at Yunnan than at Kyoto, and also contributed to the large biomass accumulation at Yunnan. The treatments of varied N application for Takanari revealed that the ratio of N accumulated at maturity to the amount of fertilized N was significantly higher at Yunnan than at Kyoto, even though there was no great difference in soil fertility. The Takanari plot with high N application showed a N saturation in plant growth at Kyoto, which might be related to low radiation and relatively high temperatures during the mid-growth stage. These results indicate that the high potential yield of irrigated rice in Yunnan is achieved mainly by intense incident solar radiation, which caused the large biomass and the N accumulation. The low nighttime temperature during the mid-growth stage was also suggested to be an important factor for large biomass accumulation and high grain yield at Yunnan.  相似文献   

6.
Source or sink limitation of grain filling in cereals is often inferred from experiments in which the source:sink ratio is manipulated by shading, defoliation or grain removal. However, interpretation of this type of experiment is usually qualitative rather than quantitative in nature and the extent of any imbalance between the source and sink is not known. The objectives of the current work were: (1) to provide a detailed analysis of radiation interception, radiation-use efficiency (RUE) and carbohydrate storage reserves in winter barley in order to quantify the potential supply of photosynthates for grain filling; (2) to estimate the variation in source–sink balance between environments. Field experiments were conducted on cv Pearl at six sites in the UK and over 3 years. Crops were grown under a comparable husbandry regime at each site and received a full fertilizer and crop protection programme. When the cumulative interception of post-anthesis photosynthetically active radiation (PAR) was plotted against the increase in biomass to determine RUE, the pattern of response differed between sites and years; for some site/years the response was linear, for others it was non-linear where RUE decreased during the latter stages of grain filling. The extent and statistical significance of non-linearity was determined from the quadratic term of fitted 2nd order polynomials. There was no significant association between climatic variables, such as temperature, radiation or rainfall, and the value of the quadratic term of RUE. Neither could non-linearity of RUE be explained in terms of the shedding of leaf tissue during canopy senescence. There were weak associations (r2 < 0.3) between the extent of non-linearity and green area index (GAI), above-ground biomass, and specific leaf N, at ear emergence (Zadoks GS 59). A much stronger relationship (r2 = 0.63) was found between the source:sink ratio (green area per grain) at GS 59 and non-linearity of RUE. These results suggest that a major factor leading to the reduction in RUE during the second half of grain filling at some sites was feedback inhibition from a limited sink capacity. This conclusion is supported by a fairly strong positive association between RUE non-linearity and the apparent contribution of stem carbohydrate reserves to grain yield (r2 = 0.47). The potential assimilate supply for grain filling was estimated as (maximum post-anthesis RUE × PAR intercepted) + stem soluble carbohydrate reserves at GS 59. The potential supply exceeded the measured yield at all sites except one implying that crops were predominantly sink limited. The size of the excess, which is a measure of the relative source–sink balance during grain filling, differed widely between site/years.  相似文献   

7.
Efficient use of nitrogen fertilizer is critical in improving yield stability in rice. The objective of this study was to determine the effect of nitrogen (N) top-dressing on the number of total spikelet (fertile plus sterile) production and evaluate the effect among rice cultivars. We analyzed 136 sets of experimental data on growth and spikelet production for three lowland cultivars, grown under various regimes of N over 10 seasons at Kyoto, Ibaraki and Kanagawa, Japan. In each season, one to three of the lowland cultivars, Nipponbare (japonica), Koshihikari (japonica) and Takanari (indica), were studied. In 1986, 1995 and 1999-2001, the N regimes included basal application only, light basal and heavy top-dressing from the panicle initiation stage onward, heavy basal and heavy top-dressing from the spikelet formation stage onward, and no applications. In 2002 and 2005-2008, we set up experimental plots with varied time of N top-dressing, with or without N basal application. Takanari had the largest spikelet number averaged over all plots and was considered better efficient in spikelet production per applied N than the other cultivars. Although the trend is not clear, the effect of time of top-dressing on spikelet number was generally the greatest when N was top-dressed from 35 to 30 days before heading. The variation of observed spikelet number was analyzed with a linear regression of plant N 14 days before heading and by a model that estimates spikelet production accounting for plant N 14 days before heading and crop growth rate (CGR) during the 14-day period preceding heading. For the variation of spikelet number within each cultivar, the linear function model expressed the observed spikelet number than the two function model with R2 0.43** versus 0.13*-0.28** for the former and later models, respectively. When the results of all cultivars were combined, the two function model was much better for estimation of spikelet number than the linear function model (R2 = 0.36** vs. 0.20*). This indicates that yearly and varietal variation of spikelet number was caused mainly by plant N status at the late spikelet differentiation stage. The varietal variation in spikelet production efficiency is explained by CGR during this 14-day period. We concluded that N applications that increase plant N 14 days before heading is highly effective in maximizing spikelet production among cultivars.  相似文献   

8.
Over time, the relative effect of elevated [CO2] on the photosynthesis and dry matter (DM) production of rice crops is likely to be changed with increasing duration of CO2 exposure. However, there is no systemic information on interactive effects of elevated [CO2] and nitrogen (N) supply on seasonal changes in phosphorus (P) nutrient of rice crops. In order to investigate the interactive effects of these two factors on seasonal changes in plant P concentration, uptake, efficiency and allocation, a free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003. A japonica cultivar with large panicle was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significantly increased shoot P concentration (dry base) over the season, the average responses varied between 7.3% and 16.2%. Shoot P uptake responses to FACE declined gradually with crop development, with average responses of 57%, 51%, 37%, 26% and 11% on average during the growth periods from transplanting to early-tillering (Period I), early-tillering to mid-tillering (Period II), mid-tillering to panicle initiation (Period III), panicle initiation to heading (Period IV) and heading to grain maturity (Period V), respectively. Seasonal changes in shoot P uptake ratio (i.e., the ratio of shoot P uptake during a given growth period to final shoot P acquisition at grain maturity) responses to FACE followed a similar pattern to that of shoot P uptake, with average responses of 19%, 14%, 3%, −5% and −16% in Periods I, II, III, IV and V of the growth period, respectively. As a result, FACE enhanced shoot P uptake by 33% at grain maturity. P allocation patterns among above-ground organs were not altered by FACE before heading, but it was modified after heading, with a shift in P allocation patterns towards vegetative organ. FACE resulted in the significant decrease in P-use efficiency for biomass across the season and P-use efficiency for grain yield and P harvest index at grain maturity. Generally, there were no interactions between [CO2] and N supply on above P nutrient variables measured. Data from this study has important implications for P management in rice production systems under future elevated [CO2] conditions.  相似文献   

9.
《Field Crops Research》1995,41(2):65-77
Loss of nitrogen from the leaves and a reduction in specific leaf nitrogen (SLN, g N m−2) is associated with grain filling in sunflower (Helianthus annuus L.). To explore the relationship between crop radiation-use efficiency (RUE, g MJ−1) and SLN, crop biomass accumulation and radiation interception were measured between the bud-visible and physiological-maturity stages in crops growing under combinations of two levels of applied nitrogen (0 and 5 g N m−2) and two population densities (2.4 and 4.8 plants m−2). Both nitrogen fertilization and density had significant (P = 0.05) effects on crop biomass yield, nitrogen uptake, leaf area index and SLN, but the nitrogen effects were more pronounced for these and other crop variables. Linear regressions of accumulated biomass (OCdwt, corrected for the energy costs of oil synthesis in the grain) on accumulated intercepted short-wave radiation between bud visible and early grain filling provided appropriate and significantly (P = 0.05) different estimates of RUE for the pooled 0 g N m−2 (1.01 g OCdwt MJ−1) and 5 g N m−2 (1.18 g OCdwt MJ−1) treatments. When calculated for each inter-harvest interval, crop RUE varied in a curvilinear fashion during the season, with a broad optimum from 40 to 70 days after emergence of the crops, and with lower values earlier and later in the season. The reduction in RUE toward physiological maturity was particularly marked. A plot of RUE against SLN revealed a reduction in RUE at small SLN values, but the relationship may be confounded by ontogenetic changes in other factors. A published model (Sinclair and Horie (1989), Crop Sci., 29: 90–98) was used to explore the RUE/SLN relationship. The model was unable to reproduce the decline in RUE during the second half of the grain-filling period. It is suggested that an important cause of this failure may be the partition, in the model, of a fixed, rather than a variable, fraction of crop gross photosynthesis to respiration.  相似文献   

10.
Rice yield potential is determined by the balance between sink size and source capacity. To clarify the factors that limit yield in temperate japonica cultivars, we compared the yield performance of Sasanishiki, a temperate japonica cultivar, with those of three near-isogenic lines (NILs) of Sasanishiki with introgression of quantitative trait loci (QTL) derived from a high-yielding indica cultivar, Habataki: qSBN1, which increases the number of secondary rachis branches; qPBN6, which increases the number of primary rachis branches; and a pyramid line that combines these two QTLs. NIL (SBN1), NIL (PBN6), and NIL (SBN1 + PBN6) produced 28–37%, 9–16%, and 62–65% more spikelets per panicle than Sasanishiki, respectively. However, the NILs with increased spikelet number per panicle did not increase grain yield significantly, because compensation is taken place among different yield components. The pyramid line nevertheless had 4–12% higher yield than Sasanishiki due to greater translocation of carbohydrates from stem to panicle. There was no difference in carbohydrate accumulation before heading or in biomass production among Sasanishiki and the three NILs. The results indicate that increasing sink size does not substantially improve yield in Sasanishiki, which lacks sufficient substrate supply to fully satisfy the increased sink demand that results from the spikelet-number QTLs.  相似文献   

11.
《Plant Production Science》2013,16(4):275-280
Abstract

The effects of flag leaves and panicles on canopy photosynthesis in a leading cultivar (Nipponbare) and two high-yielding rice cultivars (Takanari and Ghugoku 117) bred in Japan were compared. The total dry matter production was in the order of Takanari > Ghugoku 117 > Nipponbare. Canopy photosynthesis was highest in Takanari throughout the growth season, and was higher in Chugoku 117 than in Nipponbare during the ripening period. The photosynthetic rate in the flag leaf was in the order of Nipponbare > Takanari > Chugoku 117. The light extinction coefficient of canopy was higher in Takanari than in the others. At the middle ripening stage, canopy photosynthesis increased 35 and 17% in Nipponbare and Takanari, respectively, by the removal of panicles and decreased 37 and 48%, respectively, by the removal of flag leaves. In Chugoku 117, canopy photosynthesis was hardly influenced by these treatments. Clearly, the panicles intercept more radiation at the upper layer of the canopy in Nipponbare than in Takanari and flag leaves contribute more to canopy photosynthesis in Takanari than in Nipponbare. However, these effects were small in Chugoku 117. In conclusion, Takanari produces more dry matter than the others due to larger, wider, longer and more erect 1st (flag) and 2nd leaves above the panicles, which intercept more radiation. Chugoku 117 had erect panicles which allowed more radiation to penetrate into the deeper layer of the canopy, resulting in a high dry matter production. The lower panicle height relative to leaf layer and erect panicles are important characteristics for higher yield in rice.  相似文献   

12.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

13.
Crop growth is related to radiation‐use efficiency (RUE), which is influenced by the nitrogen (N) status of the crop, expressed at canopy level as specific leaf N (SLN) or at plant level as N nutrition index (NNI). To determine the mechanisms through which N affects dry‐matter (DM) production of forage kale, results from two experiments (N treatment range 0–500 kg ha?1) were analysed for fractional radiation interception (RI), accumulated radiation (Racc), RUE, N uptake, critical N concentration (Nc), NNI and SLN. The measured variables (DM, RI and SLN) and the calculated variables (NNI, Racc and RUE) increased with N supply. RUE increased from 0·74 and 0·89 g MJ?1 IPAR for the control treatments to 1·50 and 1·95 g MJ?1 IPAR under adequate N and water in both experiments. This represented an increase in RUE of 52–146% for the range of N treatments used in both experiments, whilst Racc increased by 9–17%, compared with the control treatments. Subsequently, the total DM yield of kale increased from 6·7 and 8 t DM ha?1 for the control treatments to ≥ 19 t DM ha?1 when ≥150 kg N ha?1 was applied. The DM yields for the 500 kg N ha?1 treatments were 25·5 and 27·6 t DM ha?1 for the two experiments. RUE increased linearly with SLN, at an average rate of 0·38 g DM MJ?1 IPAR per each additional 1 g N m?2 leaf until a maximum RUE of 1·90 g MJ?1 IPAR was reached in both experiments. There were no changes in RUE with SLN of > 2·6 g m?2 and NNI >1, implying luxury N uptake. RUE was the most dominant driver of forage kale DM yield increases in response to SLN and NNI.  相似文献   

14.
Variability of light interception and its derivatives are poorly understood at the field-scale in maize (Zea mays L.) and soybean [Glyine max (L.) Merr.]. Quantifying variability can provide reliable estimates of field-scale processes and reliable methodology. A field study was conducted during the 2005 growing season in a 31 ha maize and 23 ha soybean field rotated annually near Ames, IA to measure variability of cumulatively intercepted photosynthetically active radiation (CI-PAR) and radiation use efficiency (RUE) by deploying eight line quantum sensors in each field. Cumulative mean PAR interception for soybean was 575 MJ m−2 ending on day of the year (DOY) 249 compared with 687 MJ m−2 in maize ending on DOY 244. Soybean standard error (sX) for a single sensor was 4.48% and with six sensors was 1.83% of the final CI-PAR. Maize sX for a single sensor was 5.29% and with eight sensors was 1.87% of the final CI-PAR. Crop biomass was quantified weekly by collecting four 1 m2 samples. Soybean RUE using all sensors was 1.44 ± 0.06 g MJ PAR−1. The highest CI-PAR from a single sensor had RUE of 1.32 and the lowest was 1.55 g MJ PAR−1. Maize RUE using all sensors was 3.35 ± 0.09. The highest CI-PAR from a single sensor had RUE of 2.87 and the lowest was 3.70 g MJ PAR−1. Reliable transmitted PAR and RUE estimates are obtainable at the field-scale in maize and soybean with four and three sensors, respectively, assuming that crop biomass is accurately measured.  相似文献   

15.
《Plant Production Science》2013,16(3):365-380
Abstract

A high nitrogen-uptake capacity and effective use of absorbed nitrogen for dry matter and grain production are required to improve the production cost and environmental pollution. We characterized grain yield, dry matter production and nitrogen accumulation in six rice cultivars: Sekitori (released in 1848) and Aikoku (1882), referred to as SA cultivars hereafter; Koshihikari (1956); Nipponbare (1963) and Asanohikari (1987), referred to as NA cultivars hereafter; and Takanari (in 1990) as a high-yielding modern cultivar. The plants were grown with and without chemical fertilizer in a submerged paddy field. When plants were supplied with manure and chemical fertilizer, Takanari consistently produced the heaviest grain and dry matter, followed by the NA cultivars, and the SA cultivars the lightest. Dry matter production before heading was greater in Takanari and the NA cultivars due to the longer duration of vegetative growth. Dry matter production after heading was greatest in Takanari, with a larger crop growth rate (CGR), and smallest in the SA cultivars with a shorter ripening time. Greater dry matter production during ripening was accompanied by the greater accumulation of nitrogen by Takanari and NA cultivars. These plants developed a larger amount of roots. The smaller light extinction coefficient of the canopy was also attributed to the higher CGR in Takanari. When plants were grown without chemical fertilizer, Takanari also produced heavier grain and dry matter, followed by the NA cultivars. The heavier grain in these cultivars resulted from the greater dry matter production before heading, which was due to the longer period of vegetative growth. The greater dry matter production and nitrogen accumulation by Takanari and NA cultivars were evident when plants were grown with chemical fertilizer. Koshihikari was characterized by a higher CGR and greater nitrogen accumulation during ripening in the absence of chemical fertilizer which should be noted in efforts to decrease rates of nitrogen application.  相似文献   

16.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

17.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

18.
Success in “super” rice breeding has been considered a great progress in rice production in China. This study aimed to test the hypothesis that an improved root system may contribute to better shoot growth and consequently to higher grain yield in “super” rice. Two “super” rice varieties Liangyoupeijiu (an indica hybrid) and Huaidao 9 (a japonica inbred) and two elite check varieties Yangdao 6 (an indica inbred) and Yangfujiang 8 (a japonica inbred) were field-grown at Yangzhou, China in 2006 and 2007. Root and shoot dry weight (DW) was significantly greater in “super” rice varieties than in check ones throughout the growth season in both years, so was the root length density. Root oxidation activity (ROA) and root zeatin (Z) zeatin riboside (ZR) content, in per plant basis, were significantly greater in “super” rice than check varieties before and at heading time. However, both ROA and root Z + ZR content, either in per plant basis or per unit root DW basis, were significantly lower in ‘super’ rice than in check varieties at the mid- and late grain filling stages. Grain yield of the two ‘super’ rice varieties, on average, was 10.2 t ha−1 in 2006 and 11.4 t ha−1 in 2007, and was 13% and 21% higher than that of check varieties, respectively. The high grain yield was mainly due to a larger sink size (total number of spikelets) as a result of a larger panicle. The percentage of filled grains of the two “super” rice varieties, on average, was 72.9% in 2006 and 79.0% in 2007, and was 19.4% and 12.9%, respectively, lower than that of the check varieties. The mean ROA and root Z + ZR content during the grain filling period significantly correlated with the percentage of filled grains. Collectively, the data suggest that an improved root and shoot growth, as showing a larger root and shoot biomass and greater root length density during the whole growing season and higher ROA and root Z + ZR content per plant at early and mid-growth stages, contributes to the large sink size and high grain yield in the “super” rice varieties. The data also suggest the yield of “super” rice varieties can be further increased by an increase in filled grains through enhancing root activity during grain filling.  相似文献   

19.
Maize (Zea mays L.) breeding based primarily on final grain yield has been successful in improving this trait since the introduction of hybrids. Contrarily, understanding of the variation in ecophysiological processes responsible of this improvement is limited, especially between parental inbred lines and their hybrids. This limitation may hinder future progress in genetic gain, especially in environments where heritability estimation is reduced because grain yield is severely affected by abiotic stresses. The objective of this study was to analyze the genotypic variation between inbred lines and derived hybrids in the physiological determinants of maize grain yield at the crop level, and how differences among hybrids and parental inbreds may effect contrasting responses to N stress. Special emphasis was given to biomass production and partitioning during the critical period for kernel number determination. Phenotyping included the evaluation of 26 morpho-physiological attributes for 6 maize inbred lines and 12 derived hybrids, cropped in the field at contrasting N supply levels (N0: no N added; N400: 400 kg N ha−1 applied as urea) during three growing seasons. Tested genotypes differed in the response to reduce N supply for most measured traits. Grain yield was always larger for hybrids than for inbreds, but N deficiency affected the former more than the latter (average reduction in grain yield of 40% for hybrids and of 24% for inbreds). We also found (i) a common pattern across genotypes and N levels for the response of kernel number per plant to plant growth rate during the critical period, (ii) a reduced apical ear reproductive capacity (i.e., kernel set per unit of ear growth rate) of inbreds as compared to hybrids, (iii) similar RUE during the critical period and N absorption at maturity at low N levels for both groups of genotypes, but enhanced RUE and N absorption of hybrids at high N supply levels, and (iv) an improved N utilization efficiency of hybrids across all levels of N supply. Results are indicative of a more efficient use of absorbed N by hybrids than by parental inbreds. Larger grain yield of hybrids than of inbreds at N0 was associated to (i) enhanced dry matter accumulation due to improved light interception during the life cycle and (ii) enhanced biomass partitioning to the grain.  相似文献   

20.
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers’ incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870–1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum = 31 °C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mm deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m2) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m2). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m2) between treatments; generally the grain yield (g/1.5 m2) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m2) than that on PRBs (mean 815 g/1.5 m2) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m2) in this system of PRBs. The growth and the grain yield (y in g/m2) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1.1x − 308; r2 = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m2). Manual tillage did not affect growth and grain yield of rice (g/m2; g/1.5 m2), either on PRB or on Flat land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号