首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Early interferences among plants within a maize stand determine the establishment of extreme plant types (i.e. dominant and dominated individuals). The development of these hierarchies takes place well before [from the seventh leaf stage (V7) onwards] the start of the critical period for kernel set (i.e. a 30-day period centered in silking). Kernel number per plant (KNP) is significantly related to plant growth rate around silking (PGRS) and biomass partitioning to the ear during this period. Previous evidence has demonstrated that at high stand densities, extreme plant types may exhibit similar PGRS values but set different KNP. We tested the hypothesis that early established plant hierarchies differ in biomass allocation to the ears during the period around silking. Two hybrids of contrasting tolerance to crowding (DK752 and DK765 as the tolerant and the intolerant hybrid, respectively) were cropped at different interplant competition intensities (6, 12, 12 pl m−2 thinned to 6 pl m−2 at V9 and 6 pl m−2 shading from V9 onwards) during 2003/2004 and 2004/2005 in Argentina. For all treatments, the coefficient of variation (CV) of plant biomass increased from V3 (ca. 1.2%) to V9-10 (ca. 22%). From V7 onwards, plant growth rate of dominant individuals was higher (P < 0.05) than that of the dominated plants. Hence, dominant plants exhibited higher (P < 0.05) PGRS (ca. 4.5 g pl day−1) than dominated individuals (ca. 3.7 g pl day−1). As PGRS declined in response to increased plant population density (ca. 5.1 and 2.8 for 6 and 12 pl m−2, respectively), biomass partitioning to the ear was reduced (ca. 0.44 and 0.33 for 6 and 12 pl m−2, respectively). For all treatments, however, dominant plants exhibited a greater biomass partitioning to the ear (ca. 0.41) than the dominated individuals (ca. 0.36). Consequently, the former were the individuals with the highest ear growth rate (ca. 1.9 and 1.4 g per ear per day for the dominant and dominated plant, respectively) and KNP (ca. 623 and 490 kernels per plant for the dominant and dominated plant, respectively) of the stand. We identified three traits on DK765 related to the low tolerance to high-density stress of this genotype: (i) a higher plant-to-plant variability (CV ca. 26% and 19%, for DK765 and DK752, respectively), (ii) a lower biomass partitioning to the ear around silking (ca. 0.26 and 0.39 for DK765 and DK752, respectively), and (iii) a higher response rate of KNP to ear growth rate around silking (ca. 370–738 and 360–414 kernels per g, for DK765 and DK752, respectively). Hence, as stand density was increased, KNP of DK765 was sharply reduced, especially in the dominated individuals of the stand.  相似文献   

2.
Increased plant population density in irrigated and fertilized maize crops enhances plant-to-plant variability since early vegetative stages, because the most suppressed individuals of the stand intercept less radiation per unit leaf area than the dominant ones (i.e. a size-asymmetric competition for light). Contrarily, a size-symmetric competition has been proposed for the acquisition of soil resources in a plant community (e.g. N capture per unit root length is similar among plants of different size). Hence, N fertilization effect on the variability of maize plants would depend on the initial plant-to-plant variability or on that promoted by a high plant population density. Two maize hybrids with contrasting tolerance to crowding (tolerant AX820 and intolerant AX877) were cultivated under different combinations of stand densities (6, 9 and 12 plants m−2) and N supplies (0 and 200 kg N ha−1) without water restrictions. Variability in plant growth rate among plants was computed along the cycle, especially after fertilizer was applied (i.e. the early reproductive period; PGRER) and during the critical period around silking (PGRCP). Plant-to-plant variability in biomass partitioning to the ear (partition index; PI), ear growth rate during the critical period (EGRCP) and kernel number per plant (KNP) was also established. Reduced N supply increased the coefficient of variation (CV) of PGRER, PGRCP, EGRCP and KNP (0.05 < P < 0.10). The CVs of PGRCP, PI, EGRCP and KNP augmented (0.001 < P < 0.10) at the highest stand density. The CVs of PGRER, PGRCP, PI and KNP were larger for hybrid AX877 than for hybrid AX820 (0.001 < P < 0.10). N fertilization smoothed the initial plant-to-plant variability, but the extent of this benefit in a maize crop is genotype dependent; it was much larger in the hybrid tolerant to crowding stress than in the intolerant one. For the latter, the variability held during the critical period around silking and produced a high CV of KNP.  相似文献   

3.
Reduced plant biomass and increased plant-to-plant variability are expected responses to crowding in monocultures, but the underlying processes that control the onset of interplant interference and the establishment of hierarchies among plants within a stand are poorly understood. We tested the hypothesis that early determined plant types (i.e. dominant and dominated individuals) are the cause of the large variability in final kernel number per plant (KNP) usually observed at low values of plant growth rate (PGR) around silking in maize (Zea mays L.). Two hybrids (DK696 and Exp980) of contrasting response to crowding were cropped at different stand densities (6, 9 and 12 plants m−2), row spacings (0.35 and 0.70 m), and water regimes (rainfed and irrigated) during 1999/2000 and 2001/2002 in Argentina. The onset of interplant competition started very early during the cycle, and significant differences (P<0.05) in estimated plant biomass between stand densities were detected as soon as V4–6 (DK696) and V6–7 (Exp980). Plant population and row spacing treatments did not modify the onset of the hierarchical growth among plants, but did affect (P<0.02–0.08) the dynamic of the process. For both hybrids, the rate of change in relative growth between plant types was larger at 9 and 12 plants m−2 (ca. 0.12 g/g per 100 °C day) than at 6 plants m−2 (ca. 0.07 g/g per 100 °C day). For all treatments, the largest difference in estimated shoot biomass between plant types took place between 350 (V7) and 750 °C day (V13) from sowing, and remained constant from V13 onwards. Dominant plants always had more kernels per plant (P<0.05) than the dominated ones, but differences between plant types in PGR around silking were significant (P<0.05) only at 12 plants m−2. Our research confirmed the significant (P<0.01) curvilinear response of KNP to PGR around silking, but also determined a differential response between plant types: the mean of residual values were significantly (P<0.01) larger for dominant than for dominated individuals. Estimated ear biomass at the onset of active kernel growth (R3) reflected the variation in KNP (r2≥0.62), and was significantly (P<0.01) related to estimated plant biomass at the start of active ear growth (ca. V13). This response suggested that the physiological state of each plant at the beginning of the critical period had conditioned its reproductive fate. This early effect of plant type on final KNP seemed to be exerted through current assimilate partitioning during the critical period.  相似文献   

4.
Final kernel number in the uppermost ear of temperate maize (Zea mays L.) hybrids is smaller than the potential represented by the number of florets differentiated in this ear, and than the number of silks exposed from it (i.e., kernel set <1). This trend increases when stressful conditions affect plant growth immediately before (GS1) or during (GS2) silking, but the magnitude of change has not been documented for heat stress effects and hybrids of tropical background. In this work we evaluated mentioned traits in field experiments (Exp1 and Exp2), including (i) two temperature regimes, control and heated during daytime hours (ca. 33-40 °C at ear level), (ii) two 15-d periods during GS1 and GS2, and (iii) three hybrids (Te: temperate; Tr: tropical; TeTr: Te × Tr). We also measured crop anthesis and silking dynamics, silk exposure of individual plants, and the anthesis-silking interval (ASI). Three sources of kernel loss were identified: decreased floret differentiation, pollination failure, and kernel abortion. Heating affected all surveyed traits, but negative effects on flowering dynamics were larger (i) for anthesis than for silking with the concomitant decrease in ASI, and (ii) for GS1 than for GS2. Heat also caused a decrease in the number of (i) florets only when performed during GS1 (−15.5% in Exp1 and −9.1% in Exp2), and only among Te and TeTr hybrids, (ii) exposed silks of all GS × Hybrid combinations, and (iii) harvestable kernels (mean of −51.8% in GS1 and −74.5% in GS2). Kernel abortion explained 95% of the variation in final kernel numbers (P < 0.001), and negative heat effects were larger on this loss (38.6%) than on other losses (≤11.3%). The tropical genetic background conferred an enhanced capacity for enduring most negative effects of heating.  相似文献   

5.
Castor plant (Ricinus communis L.) produces a very important oil for chemical and biofuel industries. However, doubts remain about what the best plant arrangement is to obtain the maximum yield of seeds and oil from short height castor genotypes cultivated in higher plant population. This study evaluated two castor genotypes (FCA-PB and IAC 2028) in 5 plant arrangements (row spacing × in-row spacing): 0.90 m × 0.44 m (traditional), 0.90 m × 0.20 m, 0.75 m × 0.24 m, 0.60 × 0.30 m, and 0.45 m × 0.40 m, in spring-summer and fall-winter cropping seasons in Botucatu, São Paulo State, southeastern Brazil. The traditional plant arrangement comprised an initial plant population of 25,000 plants ha−1, while the others comprised 55,000 plants ha−1. The IAC 2028 genotype presented the greatest plant height, first raceme insertion height, basal stem diameter, number of fruits per raceme and 100 seed weight; however, seed yield and seed oil content were equal between genotypes. Wider stems and higher number of racemes per plant and fruits per raceme were observed with a 0.90 m × 0.44 m plant arrangement, but due to the lowest plant population (25,000 plants ha−1) in this plant arrangement, the higher values of the yield components mentioned above did not result in higher yield. The higher plant population (55,000 plants ha−1) by narrower row spacings (0.45 or 0.60 m) combination produced a higher castor seed yield. The effect of plant arrangement was more intense in the spring-summer cropping season.  相似文献   

6.
Sweet sorghum (Sorghum bicolor (L.) Moench.) is a drought-tolerant crop with high resistance to saline-alkaline soils, and sweet sorghum may serve as an alternative summer crop for biofuel production in areas where irrigation water is limited. A two-year study was conducted in Northern Greece to assess the productivity (biomass, juice, total sugar and theoretical ethanol yields) of four sweet sorghum cultivars (Sugar graze, M-81E, Urja and Topper-76-6), one grain sorghum cultivar (KN-300) and one grass sorghum cultivar (Susu) grown in intermediate (3.2 dS m−1) or in high (6.9 dS m−1) soil salinity with either low (120 mm) or intermediate (210 mm) irrigation water supply (supplemented with 142–261 mm of rainfall during growth). The soil salinity and irrigation water supply effects on the sorghum chlorophyll content index, photosystem II quantum yield, stomatal conductance and leaf K/Na ratio were also determined. The sorghum emergence averaged 75,083 plants ha−1 and 59,917 plants ha−1 in a soil salinity of 3.2 dS m−1 and 6.9 dS m−1, respectively. The most affected cultivar, as averaged across the two soil salinity levels, was the Susu grass sorghum emerging at 53,250 plants ha−1, followed by the Topper-76-6 sweet sorghum emerging at 61,250 plants ha−1. The leaf K/Na ratio decreased with decreasing irrigation water supply, in most cases, but it was not significantly affected by soil salinity. The dry biomass, juice and total sugar yields of sorghum that received 210 mm of irrigation water was 49–88% greater than the yields of sorghum that received the 120 mm of irrigation water. Sorghum plants grown in a soil salinity of 3.2 dS m−1 produced 42–58% greater dry biomass, juice and total sugar yields than the yields of sorghum plants grown in a soil salinity of 6.9 dS m−1. The greatest theoretical ethanol yield was produced by sweet sorghum plants grown in a soil salinity of 3.2 dS m−1 with 210 mm of irrigation water (6130 L ha−1, as averaged across cultivar), and the Urja and Sugar graze cultivars produced the most ethanol (7620 L ha−1 and 6528 L ha−1, respectively). Conclusively, sweet sorghum provided sufficient juice, total sugar and ethanol yields in fields with a soil salinity of 3.2 dS m−1, even if the plants received 50–75% of the irrigation water typically applied to sorghum.  相似文献   

7.
Maize (Zea mays L.) grain yield is strongly related to the number of harvested kernels, where kernel number can be increased by synchronously pollinating silks rather than allowing them to be progressively pollinated as they naturally appear from the husks. However, there is scarce evidence on how this practice affects kernel weight (KW) and plant grain yield (PGY), and no report exists on its effects when combined with treatments aimed to reduce apical dominance, like male sterility and detasseling. Field experiments were conducted in two growing seasons (Exp1 and Exp2) using two hybrids, cropped at contrasting stand densities (3 and 9 plants per m2) and including (i) male-fertile and male-sterile versions, (ii) tasseled and detasseled plants, and (iii) natural (NP) and synchronous pollination (SP; pollen added manually to ears bagged 5 days after initial silking) systems. Tassel growth of sterile and fertile versions was also evaluated in a separate experiment (Exp3). Detasseling increased the number of ears per plant reaching silking (P < 0.001) of NP plants, but this beneficial effect of reduced apical dominance did not improve kernel number per plant (KNP) or PGY. Similarly, the early arrest of anther growth in male-sterile plants had no clear benefit on KNP. In contrast, KNP was enhanced by synchronous pollination (range between −13% and +71%; average of +15.4% in Exp1 and +3.9% in Exp2). However, this pollination system promoted a decreased in KW (range between −30% and +4%; average of −11.8% in Exp1 and −7.8 in Exp2) such that the treatment had no effect on PGY (range between −19% and +37%; average of +1% in Exp1 and −4% in Exp2). Because plant growth rate around flowering was not different between pollination treatments, assimilate availability per kernel was reduced from ovary fertilization onwards in synchronously pollinated plants when compared to open pollinated plants. This explains the reduced KW when increasing KNP by synchronous pollination. In summary, none of the imposed treatments allowed grain yield to be increased at the plant level.  相似文献   

8.
In maize, the effects of nitrogen (N) deficiencies on the determination of kernel number per plant (KNP) have been described only by changes in plant growth rate during the critical period for kernel set (PGRcp). We hypothesize that N availability affects KNP also through variations in biomass allocation to the ear, which determines a stable N concentration in this organ. Six maize hybrids of different breeding origin were evaluated in field experiments at two N levels (0 and 400 kg N ha−1 applied). Traits included were KNP and per apical ear (KNE1), and the allometric estimation of PGRcp, ear growth rate during the critical period (EGRcp), and N content and N concentration in different plant organs. We demonstrated that (i) N availability promoted differences among genotypes (G) in the response of EGRcp and KNP to PGRcp, (ii) variations in KNE1 were explained by EGRcp (r2 = 0.64) and by ear N content at silking + 12 d (r2 = 0.64), and (iii) ear N concentration was a highly conservative trait (range between 10.47 and 15.98 mg N g biomass−1) as compared to N concentration in vegetative tissues (range between 4.94 and 18.04 mg N g biomass−1). Three response patterns were detected among hybrids, one for which the relationship between EGRcp and PGRcp did not vary between N levels and experiments, a second one for which N availability affected this relationship, and a third one for which the response was affected by the year (Y) effect. These results, together with the high correlation between EGRcp and ear N content (r2 = 0.88), evidenced the importance of both photo-assimilate and N availability on EGRcp and KNP determination. Values of 1.5–2.3 g ear−1 d−1 during the critical period and 0.49–0.70 g of N ear−1 at silking + 12 d were determined as thresholds for maximizing KNE1, and both could be easily estimated by means of allometric models.  相似文献   

9.
Plants can host many herbivores and their natural enemies during their growth cycles. For this reason, changes in the relative abundance of crop and weed plants in a monocropping system as well as different crop plants in an intercropping system may produce great bottom up impacts in the specific and functional structure of spontaneous communities of arthropods. The hypothesis of this study was that the combination of two contrasting species, soybean (Glycine max, Fabaceae, N2 fixing plant) and annual wormwood (Artemisia annua, Asteraceae, VOCs plant), would be related to different spontaneous communities of arthropods depending on the proportion of each species, and this would favor crop biodiversity without compromising crop production. The objectives of the study were: (a) to analyze the differences of spontaneous communities of arthropods related to different soybean (S)-annual wormwood (W) mixtures, using standard crop management for S production in Argentina, (b) to determine S and W total biomass and W essential oil content and yield and, (c) to analyze the relationship between arthropod communities and crop productivity. Factorial field experiments with 3 replications were done during 2006 and 2007. S density was kept constant (40 plants m−2) and different W densities (plants m−2) were added. Treatments were pure S, S + 2W, S + 4W, S + 8W and pure W (8 plants m−2). Arthropods were sampled at soybean full flowering and were classified in functional groups as herbivores and non-herbivores. S and W total and relative biomass and W essential oil content and yield from leaves and inflorescences were estimated in reproductive stage. Arthropod morphospecies abundance and richness were determined for each treatment. Data were analyzed using uni (ANOVA) and multivariate (CCA) techniques. Arthropods belonging to 7 orders presented a total richness of 48 morphospecies in 2006 and 36 in 2007, while total abundance was 379 in 2006 and 318 in 2007. The proportion of non-herbivores was higher than the proportion of herbivores. Different arthropod communities were observed according to each treatment. No differences were found among treatments in S + W and S total biomass production, while W total biomass and essential oil yield were both different among treatments. Relative biomass production of S and W was the main explanatory variable related to the contrast of arthropod communities between pure annual wormwood (W) and the rest of the treatments. Annual wormwood could be used as an accompanying essential oil crop or left as a weed in the densities tested in this work, favoring biodiversity and, eventually, pest management without compromising soybean crop yield.  相似文献   

10.
Maize-soybean and sunflower-soybean intercrops have the potential for increasing yield per unit land area and time in fully mechanized farming systems. The objectives of this work were to measure the land equivalent ratio index of maize and sunflower intercropped to soybean, to assess the effects of plant density of its components, and to gain insight into ecophysiological processes affecting their yield determination. Maize-soybean and sunflower-soybean intercrops and their respective sole crops were grown at Balcarce, Argentina during two growing seasons. Treatments included a wide range of plant densities for sole and intercropped sunflower (2-9 plants m−2) and maize (4-12 plants m−2). Plants were harvested to determine shoot dry matter and grain yield per plot and at the individual plant level. Land equivalent ratio index (LER) increased 11% (mean of the two years) when plant density of sunflower was reduced from 6 to 3 plants m−2; and LER increased 5% (year 1) or it was maintained (year 2) when maize plant density was reduced from 8 to 4 plants m−2. Yield response to plant density of sunflower and maize influenced LER. The response to plant density of intercropped sunflower and maize grain yield followed the same pattern than that in a sole crop, and grain yield of intercropped sunflower or maize were lower than those for the sole crops at each plant density except at the lowest sunflower plant density. Yield reductions from sole crop to intercrop at each plant density averaged 20% and were associated (i) with lower intra-row spacing in the intercrop and (ii) with a lower shoot production rather than to a change in the dry matter partitioning to reproductive structures; in addition, detrimental effects of soybean over maize or sunflower yield were undetectable.  相似文献   

11.
Under dryland conditions of the Texas High Plains, maize (Zea mays) production is limited by sparse and erratic precipitation that results in severe water stress particularly during grain formation. When plant populations are reduced to 2.0–3.0 plants m−2 to conserve soil water for use during grain filling, tillers often form during the vegetative growth and negate the expected economic benefit. We hypothesized that growing maize in clumps spaced 1.0 m apart would reduce tiller formation, increase mutual shading among the plants, and conserve soil water for grain filling that would result in higher grain yield. Studies were conducted during 2006 and 2007 at Bushland, TX. with two planting geometries (clump vs. equidistant), two irrigation methods (low-energy precision applicator, LEPA, and low-elevation spray applicator, LESA) at three irrigation levels (dryland, 75 mm and 125 mm in 2006; and dryland, 50 mm and 100 mm in 2007). For dryland plots in 2007, clump plants had only 0.17 tillers (0.66 tillers m−2) compared with 1.56 tillers per plant (6.08 tillers m−2) for equidistant spacing. Tillers accounted for 10% of the stover for the equidistant plants, but less than 3% of the grain. Clump planting produced significantly greater grain yields (321 g m−2 vs. 225 g m−2 and 454 g m−2 vs. 292 g m−2 during 2006 and 2007, respectively) and Harvest Indexes (0.54 vs. 0.49 and 0.52 vs. 0.39 during 2006 and 2007, respectively) compared with equidistant plants in dryland conditions. Water use efficiency (WUE) measurements in 2007 indicated that clumps had a lower evapotranspiration (ET) threshold for initiating grain production, but the production function slopes were 2.5 kg m−3 for equidistant treatments compared to 2.0 kg m−3 for clump treatments. There was no yield difference for method of irrigation on water use efficiency. Our results suggest that growing maize in clumps compared with equidistant spacing reduced the number of tillers, early vegetative growth, and Leaf Area Index (LAI) so that more soil water was available during the grain filling stage. This may be a useful strategy for growing maize with low plant populations in dryland areas where severe water stress is common.  相似文献   

12.
Wastage of agricultural chemicals and ensuing environmental pollution is an issue, where ineffective spray deposition is a major concern with conventional pesticide application methods. Electrostatic spraying is known to be one of the most effective methods to improve leaf abaxial (underside) surface deposition, overall deposition, and distribution on the plant targets. Deposition of charged sprays on leaf abaxial and adaxial (upper) surfaces as influenced by the spray charging voltage (system), application speed (operational), target height and orientation (target) parameters was studied in the laboratory. An air-assisted electrostatic induction spray charging system attached to a moving carriage was used to apply charged spray at uniform application (ground) speeds. Spray deposition (101–71 μm NMD), determined using a fluorescent tracer technique increased with charging (0–5.5 mC kg−1) on leaf abaxial and decreased with charging on adaxial surface. The deposition was higher on abaxial (0.66–1.33 μg cm−2) at 30° below (horizontal plane) and on adaxial (0.78–1.79 μg cm−2) at 0° (horizontal) target orientation for lower (0.278 m s−1) application speed. At all target heights, abaxial deposition increased with charging voltage (0–4.0 kV) for medium application speed (0.417 m s−1) and adaxial deposition decreased with charging voltage for lower application speed (0.278 m s−1). The medium application speed with higher charging voltage was optimum for abaxial and adaxial deposition. The droplet velocity and charging voltage were the key factors for obtaining desired spray deposition on targets. All the selected factors including target orientation (O), application speed (S), target surface (L), and charging voltage (V), and their interactions except between O and S were significant at lower (0.35 m) and medium (0.65 m) target heights. All the factors and their interactions except between O and V were significant at higher (0.95 m) height. Electrostatically charged spray improved the underside (abaxial) and overall deposition. The deposition was substantially influenced by factors such as charging voltage, application speed, plant target height, and target orientation.  相似文献   

13.
Root lodging is an important adversity affecting sunflower (Helianthus annuus L.) production in Argentina under current husbandry practices, and may limit progress towards the achievement of higher yields via increased plant population density. Although there are perceptions that lodging susceptibility varies across developmental stages, crop population densities, genotypes and soil types, these perceptions have not been tested for sunflower using a standardized experimental protocol. This study aimed at: (1) identifying the sources of the variation in root lodging susceptibility in response to variations in crop population density in two genotypes of reputedly different susceptibility; (2) detecting the crop developmental stages most susceptible to root lodging; and (3) examining the relationships between root failure moment, root plate diameter and soil shear strength. We mechanically induced lodging at three developmental stages in plants rooted in pre-wetted plots. The crops were grown at 5.6 plants m−2 over 3 years on either Typic Argiudoll or Typic Hapludoll soils and at 3, 5.6, 10 and 16 plants m−2 on a Typic Argiudoll. The force needed to induce root lodging (root failure moment) and root plate diameter varied across genotypes, plant densities and developmental stages. Root failure moment and root plate diameters were greater (p < 0.05 for both variables) in the resistant hybrid across the three development stages and almost all crop population densities. For both hybrids, the most susceptible development stage was R2, and root failure moment and root plate diameter diminished (p < 0.05) as crop population density increased. Although root failure moment did not differ between soil types, root plate diameter was greater (p < 0.0001) in the coarser soil. The relationship between root failure moment and the product of root plate diameter cubed by soil shear strength (a measure of plant anchorage strength) for both hybrids, both soil types, and all crop population densities could be described by a single linear relationship (y = 0.2382x; R2 = 0.812; p < 0.025).  相似文献   

14.
The paper investigates management and cultivar type effects on pearl millet stover yield and fodder quality. Sixteen pearl millet cultivars available to farmers in India were selected to represent three cultivar types: (1) traditional landrace germplasm from the arid/semi-arid millet production zones, (2) improved dual-purpose (grain and stover) open-pollinated varieties incorporating differing amounts of traditional landrace germplasm and (3) commercial, grain-type F1 hybrids, bred for use in the arid/semi-arid zone. The cultivars were grown for 2 years (2000 and 2001) at high fertility (HF: 65 kg N ha−1 and 18 kg P ha−1) and low fertility (LF: 21 kg N ha−1 and 9 kg P ha−1). Within each fertility level high (HP) and low (LP) plant population densities were established by varying sowing rate and then thinning to the target populations (HP: 11 plants m−2 and LP: 5 plants m−2). Stover fodder quality traits (nitrogen concentration, sugar content, in vitro digestibility and metabolizable energy content) were analyzed using a combination of conventional laboratory analysis and near infrared spectroscopy. In general, fertility level and cultivar type had strong effects on grain and stover yields, and on a range of stover nutritional quality traits, but with significant year interactions. In contrast, the effect of population density on these variables was largely insignificant. Higher fertilizer application significantly increased grain and stover yields and stover nitrogen concentration, in vitro digestibility and metabolizable energy content. As a result, fertilization resulted in significant increases in the yields of both digestible and metabolizable stover. Landrace cultivars as a group produced higher quality fodder than modern hybrids, but at a significant cost in grain yield. Dual-purpose, open-pollinated cultivars were generally intermediate between the landraces and hybrids, in terms of both stover quality and grain yield, but produced the highest yields of both digestible and metabolizable stover. The paper discusses the implications of these findings for Indian pearl millet farmers with various resource levels and farming objectives.  相似文献   

15.
Stem water-soluble carbohydrates (WSCs) are important plant traits influencing grain yields in wheat. However, the traits regulating WSCs storage, particularly under different nitrogen (N) levels are poorly addressed. This study investigated 35 morpho-physiological traits associated with the variation in WSC concentration (WSCc) in the main stem of eight wheat genotypes including two primitive genotypes under three N levels (0, 100, and 200 kg N ha−1). 28 traits were significantly, positively or negatively, correlated with the WSCc in all N levels, and 22 of them were consistent across N levels. Majority of the traits were positively correlated with WSCc suggesting that multiple traits regulate WSCc in wheat plants. However, few traits such as root:shoot ratio (RSR), stem nitrogen (SN), leaf nitrogen (LN), nitrogen per unit leaf area (NLA), total vegetative mass (VMASS), cellulose (CL), and hemicellulose (HC), were negatively correlated with WSCc. This suggests that plant N concentration was an important selective force driving WSCc in wheat. Indeed, a percent increase in leaf N concentration resulted in 28% lower WSCc. Direct selection estimated that higher VMASS, flag-leaf width (FLW), but lower RSR was adaptive and resulted in higher WSCc in low N level. In contrast, lower VMASS and FLW were adaptive and resulted in higher WSCc in high N level. Higher cellulose and hemicellulose were associated with lower WSCc suggesting that a reduced carbon flux to stem structural compounds may improve WSCc in wheat plants. Together, these results demonstrate that a specific suit of trait changes that evolve under N-specific selection increase main stem WSCc but the adaptive value of these changes varies among traits and N levels.  相似文献   

16.
Despite the availability of modern hybrids and better agronomic practices, there existed large gaps between attainable yield of maize (Zea mays L.) grown with recommended practices and producers’ harvest yields in the humid temperate regions of eastern Canada. A field experiment was conducted for 3 years in Ottawa, Canada, to determine the most important management yield-limiting factor(s) on rainfed maize grain production. A package of recommended practices (RP) was composed with the recommended levels of nitrogen (N), phosphorus (P), potassium (K), micronutrients, chemical weed control, and plant population density (PPD). Each factor was modified from the RP, making a total of 11 treatments. Under the low occurrence of diseases or insects, weed infestation was the most important yield-limiting factor, which reduced grain yield by 27–38%. While lack of preplant N application (100 kg ha−1) reduced yield by 10–22%, there was no yield increment with additional sidedressing N (50 kg N ha−1). Grain yield was reduced by 8–13% with low PPD (60,000 plants ha−1) in all years, whereas increasing PPD to 90,000 plants ha−1 did not improve yield, compared with the RP. Withhold P application did not affect yield in all years, but yield was reduced by up to 13% in the absence of K, and by 10% and 12% without Zn or Mn, respectively, in 1 year. Our results indicated that lack of weed control (i.e. herbicide use) was the major yield-limiting factor followed by fertilizer N and PPD. The responses of grain yield to K, Zn, and Mn were site and/or year specific. Our study provided experimental data and an insight understanding of yield gap between genotype's yield potential achievable with recommended practices and yields with producers’ practices.  相似文献   

17.
Cover cropping can have various beneficial effects to the cropping system such us the increase of soil nutrient content and weed suppression. In this respect, the species used for covering is of great importance. This paper reports results on the yield and weed control effects in potato crops preceded by different cover crops over a 2-year period (2003 and 2004) in Central Italy (Viterbo). Results were obtained in the frame of a more complex study set up in 2002 where in a 3-year chick-pea/potato/tomato rotation, each crop was preceded by 7 different soil managements: 5 cover crops (rapeseed, Italian ryegrass, hairy vetch, snail medick and subclover) + 1 unfertilised weedy fallow (cover crop absent) + 1 control (weedy fallow fertilised with mineral N at a rate of 170 kg ha−1 for potato). Two different weed control regimes in potato were also applied [weed-free crop (1 inter-row hoeing + 1 hilling up + manual weeding on the row); mechanical control (1 inter-row hoeing + 1 hilling up)]. Cover crops were sown in September and cut and ploughed just before potato planting in March. The potato crops following the cover crops were only fertilised with green manure. Averaged over years, all the cover crops produced more above-ground dry biomass than the weedy fallow (4.79 t ha−1 on average vs 2.36 t ha−1). Hairy vetch and subclover accumulated the highest N in the incorporated biomass (169 and 147 kg ha−1), followed by snail medick (108), rapeseed (99), ryegrass (88) and weedy fallow (47). Rapeseed and ryegrass were the most efficient weed suppressors and had the least proportion of weed biomass (<1%) of the total produced by the cover, while they also reduced weed emergence in the following potato crops (8.8 plants m−2vs 25.5 plants m−2 with all other cover crops). Following subclover and hairy vetch the potato crop yield was similar to that obtained by mineral N-P-K fertilisation (48.5 t ha−1 of fresh marketable tubers). Mechanical weed control compared to weed free crop always reduced potato yield and the reduction, averaged over years, was greater in N-P-K mineral fertilised control (−23.6%) and smaller in ryegrass (−7.9%).  相似文献   

18.
Artemisinin isolated from the aerial parts of Artemisia annua L. is a promising and potent antimalarial drug. It posses remarkable activity against both chloroquinine resistant as well as chloroquinine sensitive strains of Plasmodium falciparum. It is also useful in the treatment of cerebral malaria. The relatively low content of artemisinin in A. annua and unavailability of cost effective and viable synthetic protocol however, are major obstacles to the commercial production of the drug. The enhanced production of artemisinin is hence, highly desirable, which can be achieved by adequate and judicious supply of plant nutrients. The present experiment was therefore, designed to study the effect of organic manure (15 tonnes ha−1) and chemical fertilizers (N40+40, P40, K40, S15+15 kg ha−1; nitrogen, phosphorus, potassium and sulphur) on the accumulation of artemisinin and biomass in various plant parts through the developmental stages of A. annua L. Artemisinin yield (kg ha−1) was also determined through the developmental stages of A. annua L. Artemisinin content and artemisinin yield of dried leaves were increased significantly at pre-flowering stage in the plants treated with NPKS (27.3% and 53.6%) and NPK (18.2% and 33.5%), respectively, when compared with control. Maximum dry yield of leaf ranging from 2596 to 3141 kg ha−1 was observed at pre-flowering stage with various treatments.  相似文献   

19.
CIMMYT hexaploid spring wheat (Triticum aestivum L.) germplasm has played a global role in assisting wheat improvement. This study evaluated four classes of CIMMYT germplasm (encompassing a total of 273 lines), along with 15 Australian cultivars (Oz lines) for grain yield, yield components and physiological traits in up to 27 environments in Australia's north-eastern region, where terminal drought frequently reduces grain yield and grain size.Broadly-adapted CIMMYT germplasm selected for grain yield had greater yield potential and improved performance under drought stress, being up to 5% greater yielding in High-yielding (mean yield 429 g m−2) and 4-10% greater yielding than adapted Oz lines in Low-yielding environments (mean yield 185 g m−2). Whilst maintaining statistically similar harvest index and spikes m−2 compared to broadly-adapted Oz lines across all environments, sets of selected CIMMYT lines had greater canopy temperature depression (0.18-0.27 °C), dry weight stem−1 (0.20-0.37 g), increased grains spike−1 (0.8-3.4 grains), grain number m−2 (ca. 20-800 grains), and maturity biomass (56-83 g m−2). Compared to selected Oz lines, broadly-adapted CIMMYT lines had a smaller reduction in Low compared to High-yielding environments for these traits, especially dry weight stem−1, such that CIMMYT lines had ca. 25% and 10% greater dry weight stem−1 than the Oz lines in Low- and High-yielding environment groups, respectively. Broadly-adapted CIMMYT germplasm also had slightly higher stem water soluble carbohydrate concentration at anthesis (ca. 6 mg g−1), which contributed to their higher grain weight (ca. 0.5 mg grain−1), and maintained an agronomically appropriate time to anthesis and plant height. Thus current CIMMYT germplasm should be useful donor sources of traits to enrich breeding programs targeting variable production environments where there is a high probability of water deficit during grain filling. However, as multiple traits were important, efficient introgression of these traits in breeding programs will be complex.  相似文献   

20.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号