首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将取自某矿厂附近重金属镉(Cd)污染土壤,与正常耕种层土壤按比例混合,最终获得不同浓度梯度的重金属镉污染土壤。选取湖南地区春秋季节栽种面积较大的黄瓜、豇豆、小白菜、萝卜及莴笋等5大类蔬菜进行池栽试验。结果表明,不同蔬菜种类间重金属镉累积量差异明显,在较高土壤Cd浓度下(1.5 mg/kg),黄瓜、豇豆中Cd含量保持在国标安全值以下,可安全种植,且基因型差异较小;小白菜和萝卜在土壤中Cd浓度1.0mg/kg以下时,绝大部分品种均可安全种植,超过此浓度,部分品种中Cd含量增加明显,且随土壤中Cd浓度增加,基因型差异显著,且重金属Cd累积量与土壤中浓度也并非存在正相关性,波动较大,品种种植存在一定风险,需要仔细评估后再决定是否可以在重金属污染土地推广种植;莴笋对Cd累积量较高,在土壤轻度污染时其累积量即超过国家安全限量标准,不推荐在Cd污染地区种植推广。  相似文献   

2.
不同种类蔬菜苗期对镉的敏感性研究   总被引:1,自引:0,他引:1  
产地环境中镉(Cd)对蔬菜的影响主要表现为蔬菜可食部分超标,高浓度时影响其生长发育,基于评述蔬菜幼苗对Cd的敏感性是按其对Cd的吸收累积量来排序,累积Cd量越高定义为该蔬菜幼苗对Cd越敏感,采用水培方法,探讨了Cd对小白菜(叶菜)、黄瓜、豇豆(果菜)和萝卜(根菜)幼苗吸收累积量及生长发育的影响.结果表明,蔬菜幼苗根和茎叶中累积Cd量均随Cd处理浓度的增加而显著增加(P<0.05).同一处理浓度下根中Cd含量远高于茎叶中Cd含量,根和茎叶对Cd的累积强弱顺序也即蔬菜苗期对Cd的敏感性排序为小白菜>萝卜>黄瓜>豇豆;随Cd浓度增加,叶片中叶绿素含量降低,过氧化氢酶(CAT)含量升高;蔬菜出苗率、幼苗根长、植株鲜重显著降低.  相似文献   

3.
为了筛选和培育对重金属Cd低积累、低位移、食用安全的蔬菜类型,以轻度Cd污染大田为蔬菜种植土壤环境,重点研究小白菜、大蒜和萝卜3类蔬菜共10个品种对Cd的富集与运移能力,并分析不同品种蔬菜的食用安全性。结果表明,不同类型的蔬菜对Cd的富集、运移能力不同,其中可食部位Cd的富集能力总体表现为小白菜萝卜大蒜,而Cd在植株体内由根部向地上部的运移能力总体表现为萝卜小白菜大蒜。在所检测的蔬菜可食部位中,紫皮和白皮大蒜中Cd含量均低于食品中污染物限量的国家安全标准(0.1 mg/kg),污染指数均处于警戒限范围内;而其他8个品种均受到不同程度的Cd污染,其中高梗小白菜、满身红萝卜、青皮萝卜属中度污染,其余属轻度污染。  相似文献   

4.
不同种类蔬菜幼苗对铅的敏感性研究   总被引:2,自引:0,他引:2  
采用水培方法,探讨了小白菜(叶菜类)、黄瓜、豇豆(瓜果类)和萝卜(根茎类)幼苗对重金属Pb的吸收累积量大小及Pb对其幼苗生长发育的影响.结果表明,蔬菜幼苗根和茎叶累积Ph量均随Pb处理浓度的增加而显著增加(P<0.05),且同一处理浓度下根中Pb含量远高于茎叶中Pb含量.蔬菜苗期根对Pb的敏感性排序为黄瓜>小自菜>萝卜>豇豆,茎叶为小白菜>萝卜>黄瓜>豇豆.低浓度的Pb对叶绿素的合成有一定程度的刺激作用,随Pb浓度增加,叶片中叶绿素含量降低.小白菜过氧化氢酶(CAT)含量随着Pb浓度的增大先增大后缓慢降低,其他3种蔬菜则表现为先减小后增大的趋势.此外,黄瓜和豇豆出芽率显著降低,4种蔬菜幼苗根长均明显受到抑制.  相似文献   

5.
长期种植蔬菜土壤的重金属累积与污染风险评价   总被引:1,自引:0,他引:1  
以长沙城郊长期种植蔬菜的土壤为研究对象,共采集57个土壤样品,分析铅(Pb)、镉(Cd)、汞(Hg)、砷(As)、铬(Cr)等重金属的含量,对长沙主要蔬菜基地的重金属累积与污染风险进行评价。结果表明,土壤中Pb浓度为20.90-64.70 mg/kg,Cd为0.035-0.64 mg/kg,Hg为0.045-0.44 mg/kg,As为7.72-26.32 mg/kg,Cr为30.8-111.99mg/kg。有43%的土壤样本中重金属浓度超过背景值,且Pb、Cd、Hg、As均呈现出明显的累积,尤其Cd、Hg的累积更为明显,Cd、Hg平均含量值较本底值增加了3.92倍和1.87倍,其单项污染指数超标率分别达到35.09%和24.56%(以《农产品安全质量无公害蔬菜产地环境要求GB/T 18407.1—2001》为评价标准,按照单项污染指数≥1即为超标)。分区评价结果表明,近郊区长期种植蔬菜地土壤大部分呈现轻度污染,随离市区距离的增加蔬菜地土壤重金属污染程度逐渐减弱。因此,长沙城郊长期种植蔬菜土壤的重金属污染问题需引起高度重视。  相似文献   

6.
矿区农田蔬菜重金属污染评价和富集特征研究   总被引:5,自引:2,他引:3  
为明确南丹矿区周边农田不同种类蔬菜污染情况,筛选适宜本区域种植的蔬菜品种,降低生态风险,通过实地采样调查,运用单因子污染指数、综合污染指数、富集系数及系统聚类分析法,评价及比较不同蔬菜可食部位中Cd、As、Pb污染状况及富集特征,同时选取叶菜类及萝卜进行不同部位重金属累积情况分析。结果表明,研究区域农田土壤为Cd、As重度污染,Cd是蔬菜的主要污染因子,不同种类蔬菜对Cd的富集能力大小表现为叶菜类茄科类块根类瓠果类豇豆类。叶菜类、豇豆类及茄科类蔬菜对3种重金属的富集能力大小为CdPbAs,块根类和瓠果类的大体趋势为CdAsPb,其中抗热尖叶油麦菜对Cd、Pb的富集能力最强,生姜对As富集能力最强。通过对叶菜类及萝卜不同部位重金属浓度分析,Cd、As、Pb浓度表现为可食部位不可食部位。研究表明,不同种类蔬菜的重金属富集能力不同,大部分易受Cd污染,其中叶菜类对Cd的富集能力基本强于其他类蔬菜,为保障村民蔬菜食用安全,建议规避叶菜类蔬菜种植,推荐种植苦瓜、香芋南瓜、七寸人参红萝卜、紫薯等瓠果及块根类蔬菜。  相似文献   

7.
为研究不同种植模式下蔬菜对镉(Cd)的吸收积累差异,在湖北大冶Cd污染土壤上开展田间试验。结果表明,"白萝卜—番茄—青萝卜"种植模式下,蔬菜的可食部位Cd含量、超标倍数、Cd累积量均显著低于其他模式,且该模式下蔬菜的产量和经济效益均为各模式中最高;此外,在该种植模式下,蔬菜非可食部位Cd累积量仅低于"白萝卜—豇豆—空心菜—红菜薹"种植模式,显著高于其他种植模式。各种植模式下,叶菜类蔬菜Cd含量整体较高,豇豆、番茄、红菜薹等非叶菜类蔬菜Cd含量整体较低。综上,在Cd轻度污染菜地进行蔬菜种植,推荐采用"白萝卜—番茄—青萝卜"种植模式,且以豇豆、番茄、红菜薹等非叶菜类蔬菜为宜。  相似文献   

8.
设置习惯施肥与施用蔬菜专用重金属钝化复合肥两个处理,在轻度镉污染(土壤活性态镉含量为0.31±0.029 mg/kg)园地上连续种植3季小白菜,探讨施用蔬菜专用重金属钝化复合肥降低小白菜中镉含量的效果。结果表明,两个处理3季小白菜的产量无明显差异;与习惯施肥相比,施用蔬菜专用重金属钝化复合肥处理第1、2、3季小白菜的镉含量分别降低了13.6%、29.7%与33.6%,差异达极显著水平;土壤pH值分别提高0.09、0.19与0.27;土壤活性态镉含量分别降低了16.2%、31.3%与34.0%,差异均达到极显著水平。可见,施用蔬菜专用重金属钝化复合肥,可有效提高土壤pH值、降低土壤中有效态镉含量,是其减少小白菜吸收累积镉的重要原因。因此,施用蔬菜专用重金属钝化复合肥,是降低轻度污染园地小白菜镉含量的经济、有效途径之一。  相似文献   

9.
[目的]研究土壤重金属Cd在木薯中累积与分配特性,探讨木薯在Cd污染土壤环境中的安全临界值.[方法]采用土壤盆栽试验,设6个土壤Cd浓度水平,测定不同土壤Cd浓度处理下木薯块根、茎叶的Cd含量,建立线性回归模型,并依据GB 2762-2005标准模拟求出木薯在Cd污染土壤环境中的安全临界值.[结果]木薯根、茎、叶的Cd含量与土壤Cd浓度呈极显著正相关,整体分布特征为茎>叶>根.当土壤Cd添加量为25 mg/kg时,木薯块根Cd含量达到0.22 mg/kg,超过国家薯类作物的限量标准0.1 mg/kg.模拟求出种植木薯的土壤Cd安全临界值为1.28 mg/kg,以木薯块根为收获目标的土壤Cd安全临界值为13.23 mg/kg.[结论]木薯对Cd累积规律为茎>叶>根,拟合求出以木薯块根为收获目标的土壤Cd安全临界值为13.23 mg/kg.  相似文献   

10.
以18个萝卜品种为试验材料,进行土培试验,探讨在镉(Cd)和砷(As)复合污染的土壤上种植对其产量、不同部位的Cd和As积累量的影响。结果表明,在试验土壤上不同的萝卜品种之间可食用部分的产量差异均达到显著水平(P 0. 05),最高和最低间相差27. 26倍;在供试的18个萝卜品种中,可食用部分Cd含量的范围在0. 057~0. 128 mg/kg (鲜质量含量),平均含量为0. 083 mg/kg,地上部Cd的含量高于地下部,说明Cd更易于在萝卜地上部积累,且品种之间Cd含量差异达到显著水平(P 0. 05); As的含量范围在0. 087~0. 223 mg/kg,最高和最低间相差2. 56倍。综合不同萝卜品种地下部产量及对Cd和As的吸收积累的差异,建议在该复合污染土壤上种植以下3个萝卜品种:夏秋白玉、申萌青翠水果和九斤王南畔洲甜晚。  相似文献   

11.
三种蔬菜对镍累积转运规律及食用安全研究   总被引:2,自引:1,他引:1  
为了解三种蔬菜(黄瓜、豇豆、青椒)体内镍(Ni)累积转运规律及食用安全,采用盆栽实验研究了不同浓度Ni处理[原土(对照)、200、350、500、650、800 mg·kg~(-1)]对三种蔬菜生物量、体内分配特征及富集规律的影响。结果表明:(1)Ni对三种蔬菜生长的影响因蔬菜品种不同而不同。在试验浓度范围促进黄瓜的生长;低浓度Ni促进青椒和豇豆生长,当土壤中Ni浓度为650 mg·kg~(-1)时青椒和豇豆的生长受到抑制。(2)在所研究土壤Ni浓度条件下三种蔬菜各部位Ni含量分布不同,青椒和豇豆中根茎叶可食部分;黄瓜中茎叶根可食部分。三种蔬菜中Ni由根部向可食部位转运能力豇豆黄瓜青椒;根部向茎叶转运能力黄瓜豇豆青椒。(3)黄瓜、豇豆、青椒可食部分Ni累积量与土壤中Ni投加量呈显著正相关关系(r2分别为0.973、0.984、0.992,P0.05)。三种蔬菜可食部分Ni含量高于基于美国环境保护署(USEPA)推荐的Ni人体最大允许摄入量所推导的新鲜蔬菜中Ni的安全阈值(成人3.58mg·kg~(-1),儿童2.83 mg·kg~(-1))。Ni在豇豆中的富集能力高于黄瓜和青椒,更容易超过食品安全阈值,Ni污染土壤要避免种植豇豆。  相似文献   

12.
通过盆栽试验在不同镉污染浓度条件下,探讨叶菜类、茄果类、根茎类9个蔬菜品种对土壤Cd的吸附规律,根据重金属低积累蔬菜的判定标准,筛选出污染地区可以种植的Cd低积累蔬菜品种。试验结果表明,1)对土壤Cd积累由低到高排序为根茎类<叶菜类(菠菜除外)<茄果类,其中速生虎耳菠菜最易吸收富集土壤Cd。2)叶菜类蔬菜随土壤Cd污染程度增加,Cd更多的由可食部分向非可食部分迁移;根茎类蔬菜则随土壤Cd污染程度增加更多的富集在可食部分;而茄果类蔬菜在轻中度污染土壤中,吸收的Cd更多富集于非可食部分,在重度污染土壤中,则更多的向可食部分迁移。3)菠菜和辣椒不能够在轻度镉污染土壤中种植,可考虑种植春不老萝卜、冬青和六月慢等蔬菜;春不老萝卜种植在中重度污染地区时,可食部分的Cd含量未超过国家安全标准。  相似文献   

13.
华中地区3种蔬菜对铅的耐性和累积特性差异研究   总被引:1,自引:1,他引:0  
[目的]比较华中地区3种常见蔬菜对铅污染的耐性和累积特性的差异。[方法]在不同浓度Pb胁迫下,对萝卜、小白菜和苋菜进行种子萌发试验和盆栽试验,研究不同处理对蔬菜种子发芽率、幼苗生长、生物量及Pb含量的影响。[结果]不同浓度Pb胁迫对3种蔬菜种子的发芽率无明显的影响,2 000 mg/L Pb胁迫对蔬菜苗长具有0.05水平显著影响,小白菜对过量Pb毒害的耐性强于萝卜和苋菜;在施加Pb浓度为0~100 mg/kg时,萝卜和小白菜的食用部位Pb含量均低于食品卫生标准;在施加Pb浓度为100和500 mg/kg的处理中,萝卜的可食部位Pb含量低于小白菜和苋菜。[结论]萝卜抗土壤Pb污染的能力最强,比小白菜和苋菜更适合在Pb污染的农田上种植,以减少Pb进入食物链。  相似文献   

14.
钝化剂对土壤镉铅有效性和微生物群落多样性影响   总被引:2,自引:3,他引:2  
为研究海泡石和生物炭两种钝化剂对镉铅复合污染土壤修复效果及微生物群落功能多样性的影响,以南京某蔬菜地土壤为研究对象,采用盆栽试验方法,研究海泡石和生物炭单施及配施条件下,土壤理化性质、土壤微生物群落功能多样性、土壤Cd、Pb有效态含量的变化以及萝卜和小白菜两种作物对Cd、Pb富集的影响。结果表明:海泡石和生物炭单施、混施均显著促进土壤Cd、Pb由酸溶态向残渣态转化,降低Cd、Pb生物有效性。其中,2.5%海泡石处理Cd、Pb有效态含量降幅最大,与对照相比,种植萝卜和小白菜的土壤Cd、Pb含量分别降低71.88%~75.44%和81.21%~84.52%。生物炭对土壤微生物活性影响显著,2.5%生物炭处理微生物对碳源利用能力最强,但微生物群落功能多样性未显著增加。添加海泡石和生物炭均减轻了萝卜和小白菜可食部位对Cd、Pb的富集,2.5%海泡石和1.25%海泡石与1.25%生物炭配施处理,萝卜可食部位Cd和Pb含量均满足《食品安全国家标准》(GB 2762—2017),但小白菜可食部位Pb含量超出安全标准。研究表明,从土壤环境质量和作物安全角度考虑,一般采取海泡石和生物炭配施进行重金属Cd-Pb复合污染土壤的修复,而且在中度Cd-Pb污染的菜地土壤中优先考虑种植萝卜类蔬菜。  相似文献   

15.
小白菜对镉污染土壤的植物修复   总被引:3,自引:0,他引:3  
通过盆栽试验,研究了小白菜在不同水平镉(Cd)污染土壤中的耐受性以及富集指标,并施加不同水平螯合剂对修复效果进行强化。结果表明:低水平Cd处理对小白菜的株高、干重有促进作用,而高水平Cd处理则表现出抑制作用,在土壤Cd添加量为200mg/kg时小白菜的株高、干重分别比土壤未添加Cd的小白菜降低了26.6%和42.6%;植株体内Cd积累规律为根部大于地上部,各部位含Cd量及Cd吸收总量均随着土壤Cd添加量的增加而递增,在土壤Cd添加量为150mg/kg时达到最大值,之后则下降。另外,在本试验条件下,施加螯合剂均提高了小白菜对Cd的吸收,但高水平的螯合剂处理却导致小白菜死亡;土壤脲酶及过氧化氢酶的活性随着土壤Cd浓度的增加而降低,而种植小白菜后可以增加土壤脲酶及过氧化氢酶的活性,促进酶活性的恢复,说明小白菜具有修复Cd污染土壤的潜力。  相似文献   

16.
土壤重金属Cd在木薯中累积特征及产地环境安全临界值   总被引:3,自引:0,他引:3  
【目的】研究土壤重金属Cd在木薯中累积与分配特性,探讨木薯在Cd污染土壤环境中的安全临界值。【方法】采用土壤盆栽试验,设6个土壤Cd浓度水平,测定不同土壤Cd浓度处理下木薯块根、茎叶的Cd含量,建立线性回归模型,并依据GB 2762-2005标准模拟求出木薯在Cd污染土壤环境中的安全临界值。【结果】木薯根、茎、叶的Cd含量与土壤Cd浓度呈极显著正相关,整体分布特征为茎>叶>根。当土壤Cd添加量为25 mg/kg时,木薯块根Cd含量达到0.22 mg/kg,超过国家薯类作物的限量标准0.1 mg/kg。模拟求出种植木薯的土壤Cd安全临界值为1.28 mg/kg,以木薯块根为收获目标的土壤Cd安全临界值为13.23 mg/kg。【结论】木薯对Cd累积规律为茎>叶>根,拟合求出以木薯块根为收获目标的土壤Cd安全临界值为13.23 mg/kg。  相似文献   

17.
有机种植中施肥引发的重金属累积风险研究   总被引:2,自引:0,他引:2  
在有机种植条件下,采用田间试验方法研究了大棚栽培中不同有机肥投入量对作物、土壤中重金属累积的影响。结果表明,在京郊蔬菜有机种植中施用有机肥可造成番茄果实中镉、铬、锌等重金属含量超标,黄瓜果实中汞含量超标,土壤中重金属累积效应明显,存在着较大的重金属污染风险。有机肥的安全施用标准亟需确立。  相似文献   

18.
采用旱地小区试验,研究了Cd污染土壤中甘薯吸收累积Cd的品种差异,探讨了甘薯吸收累积Cd的相关机理.结果表明,甘薯品种间不仅生物量差异较大,对Cd的吸收累积能力也不同,8个品种的地上部茎叶生物量(DW)在4 594.9~8 232.2 kg·hm-2,鲜样Cd含量范围为0.032 9~0.057 4 mg·kg-1;地下部块根生物量(DW)在7 809.0~14 269.7 kg·hm-2,鲜样Cd含量范围为0.002 2~0.011 0mg·kg-1,茎叶Cd含量明显高于块根,但均未超过国家食品中污染物限值标准(GB 2762-2005)(根茎类蔬菜<0.1 mg·kg-1).而与无公害蔬菜质量标准(GB 18406.1-2001)进行比较(<0.05 mg·kg-1),有3个甘薯品种(心香、湘薯15、泉薯9号)的茎叶Cd含量超标.因此,轻度Cd污染土壤种植的甘薯其茎叶可能存在摄食健康风险,而块根基本无风险,若将Cd污染土壤改制种植甘薯,必须妥善处理其地卜部茎叶.  相似文献   

19.
为探究棕榈生物炭与硅酸钙联合施用对Pb-Cd复合重金属污染土壤的钝化效果及其稳定性,本研究采用蔬菜种植盆栽实验,测定土壤溶液pH和Pb、Cd浓度以及蔬菜可食部分Pb、Cd含量。结果表明:与不添加钝化剂的对照组相比,添加钝化剂能够有效提高土壤溶液pH,使土壤溶液中Pb、Cd浓度显著降低,种植小白菜可食部分Pb含量下降62.20%~96.77%、Cd含量下降92.76%以上,多数处理符合国家食品安全标准。土壤种植适宜性研究结果表明,五种供试蔬菜可食部分重金属含量与富集系数规律一致,小白菜对Pb的富集能力最强,苋菜对Cd的富集能力最强。当土壤Pb<500 mg·kg-1时,韭菜、苋菜、甘蓝和大白菜四种蔬菜均可种植;当土壤Cd>0.6 mg·kg-1、Pb>500 mg·kg-1时,不适宜种植上述五种蔬菜。本研究探明了钝化剂的持续修复效果,研究结果可为土壤修复提及中低污染风险地区的适宜蔬菜种植提供技术和数据支撑。  相似文献   

20.
四川地区低镉富集蔬菜品种分析及安全性评估   总被引:2,自引:0,他引:2  
选取四川地区常用的5大类46种蔬菜品种,分别种植在镉超限和镉未超限土壤中,测定可食部分的镉含量,分析不同蔬菜类型的镉富集能力,探讨其食用安全性,为镉污染土壤中蔬菜种植规划提供支持。结果表明,不同类型蔬菜对重金属的富集能力顺序为:叶菜类茄果类根茎类瓜类豆类。在镉含量较高的土壤中应避免种植叶菜类中高镉富集型蔬菜品种,建议种植豆类和瓜类低镉富集型蔬菜品种。对普通人群而言,在土壤镉超限[土壤镉含量0.977±0.090 mg/kg]区域内,摄入蔬菜量442.8g/d以下通过食用蔬菜而摄入的镉含量是相对安全的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号