首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Soy protein isolate (SPI) was modified by ultrasound pretreatment (200 W, 400 W, 600 W) and controlled papain hydrolysis, and the emulsifying properties of SPIH (SPI hydrolysates) and USPIH (ultrasound pretreated SPIH) were investigated. Analysis of mean droplet sizes and creaming indices of emulsions formed by SPIH and USPIH showed that some USPIH had markedly improved emulsifying capability and emulsion stabilization against creaming during quiescent storage. Compared with control SPI and SPIH-0.58% degree of hydrolysis (DH), USPIH-400W-1.25% (USPIH pretreated under 400W sonication and hydrolyzed to 1.25% DH) was capable of forming a stable fine emulsion (d43=1.79 μm) at a lower concentration (3.0% w/v). A variety of physicochemical and interfacial properties of USPIH-400W products have been investigated in relation to DH and emulsifying properties. SDS-PAGE showed that ultrasound pretreatment could significantly improve the accessibility of some subunits (α-7S and A-11S) in soy proteins to papain hydrolysis, resulting in changes in DH, protein solubility (PS), surface hydrophobicity (H0), and secondary structure for USPIH-400W. Compared with control SPI and SPIH-0.58%, USPIH-400W-1.25% had a higher protein adsorption fraction (Fads) and a lower saturation surface load (Γsat), which is mainly due to its higher PS and random coil content, and may explain its markedly improved emulsifying capability. This study demonstrated that combined ultrasound pretreatment and controlled enzymatic hydrolysis could be an effective method for the functionality modification of globular proteins.  相似文献   

2.
The effects of enzymatic deamidation by protein-glutaminase (PG) on the functional properties of soy protein isolate (SPI) were studied. Conditions for the deamidation were evaluated by means of response surface methodology (RSM). Optimal conditions based on achieving a high degree of deamidation (DD) with a concurrently low degree of hydrolysis (DH) were 44 °C, enzyme:substrate ratio (E/S) of 40 U/g protein and pH 7.0. Under optimal conditions, both DD and DH increased over time. SDS-PAGE results indicated that lower molecular mass subunits were produced with increasing DD. Far-UV circular dichroism spectra revealed that the α-helix structure decreased with higher DD, while the β-sheet structure increased until 15 min of deamidation (32.9% DD), but then decreased at higher DD. The solubility of deamidated SPI was enhanced under both acidic and neutral conditions. SPI with higher DD showed better emulsifying properties and greater foaming capacity than SPI, while foaming stability was decreased. It is possible to modify and potentially improve the functional properties of SPI by enzymatic deamidation using PG.  相似文献   

3.
Emulsifying properties of native and chemically modified soy glycinins were studied. The influence of ionic strength, protein sample composition and concentration, and assay conditions on the flocculation-creaming process and coalescence resistance was analyzed. Differences in these emulsifying properties were exhibited by native glycinins, which have a variable content of 4S, 11S, and 15S forms. Structure and functionality of native glycinin were modified by means of combined treatments: mild acidic treatments without heating or with heating at variable time and with or without disulfide bonds reduction. Modified glycinins presented different degrees of deamidation, surface hydrophobicity, and molecular mass. A slight enhancement of emulsifying stability at moderated deamidation degrees was observed. In different protein samples, a positive relationship between the flocculation-creaming rate constant and equilibrium oil volume fraction of emulsions with surface hydrophobicity was detected. A remarkable difference was observed between reduced and nonreduced samples, mainly with respect to behavior at low or high ionic strength.  相似文献   

4.
Lateral phase separation in two-dimensional mixed films of soy 11S/beta-casein, acidic subunits of soy 11 (AS11S)/beta-casein, and alpha-lactalbumin/beta-casein adsorbed at the air-water interface has been studied using an epifluorescence microscopy method. No distinct lateral phase separation was observed in the mixed protein films when they were examined after 24 h of adsorption from the bulk phase. However, when the soy 11S/beta-casein and AS11S/beta-casein films were aged at the air-water interface for 96 h, phase-separated regions of the constituent proteins were evident, indicating that the phase separation process was kinetically limited by a viscosity barrier against lateral diffusion. In these films, beta-casein always formed the continuous phase and the other globular protein the dispersed phase. The morphology of the dispersed patches was affected by the protein composition in the film. In contrast with soy 11S/beta-casein and AS11S/beta-casein films, no lateral phase separation was observed in the alpha-lactalbumin/beta-casein film at both low and high concentration ratios in the film. The results of these studies proved that proteins in adsorbed binary films exhibit limited miscibility, and the deviation of competitive adsorption behavior of proteins at the air-water interface from that predicted by the ideal Langmuir model (Razumovsky, L.; Damodaran, S. J. Agric. Food Chem. 2001, 49, 3080-3086) is in fact due to thermodynamic incompatibility of mixing of the proteins in the binary film. It is hypothesized that phase separation in adsorbed mixed protein films at the air-water and possibly oil-water interfaces of foams and emulsions might be a source of instability in these dispersed systems.  相似文献   

5.
为提高酸性条件下大豆分离蛋白(soy protein isolates,SPI)的乳化性能,该文研究了物理-酶联合改性对SPI(pH值为4)的乳化性能影响,通过对比确定了物理-酶联合改性,即超声波-酶复合改性和挤压膨化-酶复合改性两种改性方法在酸性条件下的乳化性能效果最好;并通过对改性后 SPI(pH 值为4)进行溶解性、游离巯基、二硫键、粒径、扫描电镜(scanning electron microscope,SEM)和激光共焦扫描显微镜(confocal laser scanning microscopy,CLSM)分析,从蛋白结构变化上进一步揭示了乳化性能提高现象的原因。结果表明:超声波联合植酸酶-酸性蛋白酶改性的 SPI (Uphy-aci-SPI)的乳化活性(emulsifying activity index,EAI)为0.53 m2/g,比未改性SPI(0.18 m2/g)显著提高了196%(P<0.05),乳化稳定性(emulsifying stability index,ESI)为17 min,比未改性SPI(13.5 min)显著提高了25.9%(P<0.05);挤压膨化联合菠萝蛋白酶改性的SPI(Ebro-SPI)的EAI为0.46 m2/g,比未改性SPI显著增加了155%(P<0.05),ESI为17 min,比未改性SPI显著增加了25.9%(P<0.05)。在pH值为4的条件下对物理-酶联合改性的SPI的性质分析发现,物理-酶联合改性的SPI与未改性SPI相比,物理-酶联合改性的SPI的溶解性显著增加(P<0.05);物理-酶联合改性的SPI的乳状液平均粒径减小,CLSM观察乳状液中油与蛋白溶液稳定共融,改善了油滴之间的空间排斥力。物理-酶联合改性的SPI游离巯基的含量显著增加(P<0.05),二硫键含量显著降低(P<0.05)。SEM观察物理-酶联合改性的SPI为结构松散、破碎均一的微观结构。由此可见,乳化性能的提高是通过深层改变蛋白的结构来实现的。该研究可为探索提高酸性条件下SPI的乳化性能的方法提供理论依据。  相似文献   

6.
Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.  相似文献   

7.
Glycinin is a hexameric protein composed of five kinds of subunits. The subunits are classified into two groups, group I (A1aB1b, A1bB2, and A2B1a) and group II (A3B4 and A5A4B3). We purified four mutant glycinins composed of only group I subunits (group I-glycinin), only group II subunits (group II-glycinin), only A3B4 (A3B4-glycinin), and only A5A4B3 (A5A4B3-glycinin) from mutant soybean lines. The physicochemical properties of these glycinin samples were compared with those of the normal glycinin (11S) composed of five kinds of subunits. The thermal stabilities (as measured by thermal denaturation midpoint temperatures) of 11S, group I-glycinin, and group II-glycinin were similar to each other, although that of A3B4-glycinin was significantly lower than those of the others. The orders of aromatic and aliphatic surface hydrophobicities were the same: A3B4-glycinin > group II-glycinin > A5A4B3-glycinin > 11S > group I-glycinin. The solubility of 11S as a function of pH at mu = 0.5 was governed by that of group I-glycinin and followed this order at acidic pH: 11S = group I-glycinin > A3B4-glycinin > group II-glycinin = A5A4B3-glycinin. The order of emulsifying abilities was A5A4B3-glycinin > group II-glycinin > A3B4-glycinin > 11S > group I-glycinin. This order was consistent with that of the length of their hypervariable regions. Except for this relationship, there was no significant relationship among the other physicochemical properties of the mutant glycinins.  相似文献   

8.
The contribution of soybean protein to the physical properties of tofu, a product manufactured by curdling soy milk with coagulants such as calcium or magnesium chloride, was studied by comparing the properties of soy milk prepared from soybeans with different subunits (I, IIa, and IIb) of glycinin with amino acid residues deleted. The breaking stress value of the tofu curds prepared from soybeans having group I was higher than those without group I. The soy milks having group I contained more protein particles and showed more sensitivity to calcium and magnesium ions than those without group I. The amounts of glycinin and protein particles were higher in the soy milks having group I than those in the soy milks without group I. To elucidate the influence of each group on the breaking stress, the glycinin content was adjusted to an identical level in soy milks having each group. Among the tofu curds from three groups, their order of hardness according to their breaking stress was IIa, IIb, and I. The order of particle content among these soy milks was also IIa, IIb, and I. Therefore, the results suggested that the breaking stress value of the tofu curd is dependent upon the number of protein particles in the soy milk and that the number of the particles is determined by the proportion and structure of glycinin in the soybean.  相似文献   

9.
Soy protein elastomer (SPE) exhibits elastic, extensible, and sticky properties in its native state and displays great potential as an alternative to wheat gluten. The objective of this study was to better understand the roles of soy protein subunits (polypeptides) contributing to the functional properties of SPE. Six soy protein samples with different subunit compositions were prepared by extracting the proteins at various pH values on the basis of the different solubilities of conglycinin (7S) and glycinin (11S) globulins. Soy protein containing a large amount of high molecular weight aggregates formed from α' and α subunits exhibited stronger viscoelastic solid behavior than other soy protein samples in terms of dynamic elastic and viscous modules. Electrophoresis results revealed that these aggregates are mainly stabilized through disulfide bonds, which also contributed to higher denaturation enthalpy as characterized by DSC and larger size protein aggregates observed by TEM. Besides, the most viscoelastic soy protein sample exhibited flat and smooth surfaces of the protein particles as observed by SEM, whereas other samples had rough and porous particle surfaces. It was proposed that the ability of α' and α to form aggregates and the resultant proper protein-protein interaction in soy proteins are the critical contributions to the continuous network of SPE.  相似文献   

10.
为了进一步改善大豆分离蛋白的分散性及功能性质,该研究以大豆分离蛋白为原料,通过对天然大豆分离蛋白进行高压高剪切处理并联合冷冻干燥技术,制备大豆分离蛋白微粒,考察压力(60~100 MPa)对大豆分离蛋白微粒尺寸、功能性质及结构特性的影响,探究其构效关系。结果表明:随着压力逐渐增加,大豆分离蛋白平均粒径大幅度减小,粒径分布曲线向左侧移动,与天然大豆分离蛋白相比,在100 MPa时大豆分离蛋白粒径减小了1 631%,粒径曲线分布较宽。在60~100 MPa压力范围内随着压力的增加。与天然大豆分离蛋白相比,大豆分离蛋白微粒的分散性指数(Protein Dispersibility Index, PDI)和功能性质均显著提高(P<0.05),其中在100 MPa时大豆蛋白质的溶解性提高了172.98%,乳化活性和乳化稳定性分别增加了约28.71%和77.82%,持油性增加了约123.76%,起泡性随时间的变化其泡沫高度也均有所提高。由扫描电镜图可以观察到,未经过高压均质的大豆分离蛋白粒子呈聚集状态,球状的表面向内凹陷,经过高压均质联合冷冻干燥处理后的大豆分离蛋白微粒呈现网络结构。在高压和高剪切力的作用下,大豆分离蛋白微粒的疏水基团大量暴露,表面疏水性随之增加,静电斥力增加,α-螺旋和β-转角向β-折叠和无规则卷曲结构的转化是蛋白质的溶解性等功能性质提高的主要原因。溶解性等功能性质的提高有利于大豆分离蛋白更好的应用于食品加工行业,进一步为蛋白的理化性质及结构优化提供新思路。  相似文献   

11.
Okara is a low‐value coproduct of soy milk production. Its dry matter contains 25–30% protein that is of high nutritive quality, has an excellent efficiency ratio, and thus holds promise for applications in food systems. However, okara protein has low solubility. We here optimized its extraction and isolation from okara by using dilute sodium hydroxide and subsequent isoelectric precipitation. The obtained okara protein isolate (OPI) was hydrolyzed with different enzymes into a range of hydrolysates with different degrees of hydrolysis. Most hydrolysates had better emulsifying activity and produced more stable emulsions than OPI. In contrast, hydrolysis had no positive effect on foam‐forming and foam‐stabilizing activity of OPI proteins. Hydrolysis of OPI enhances the emulsifying capacity of the proteins. Furthermore, the emulsifying and foam‐forming capacities of most of the OPI hydrolysates were similar to or even better than those of the commercial (soy) protein hydrolysates used in this study.  相似文献   

12.
Rapeseeds contain cruciferin (11S globulin), napin (2S albumin), and oleosin (oil body protein) as major seed proteins. The effects of oil expression and drying conditions on the extraction of these proteins from rapeseed meal were examined. The conditions strongly affected the extraction of oleosin and only weakly affected the extraction of cruciferin and napin. The protein chemical and physicochemical properties of cruciferin, the major protein present, were compared with those of glycinin (soybean 11S globulin) under various conditions. In general, cruciferin exhibited higher surface hydrophobicity, lower thermal stability, and lower and higher solubility at mu= 0.5 and mu = 0.08, respectively, than did glycinin. At the pHs (6.0, 7.6, and 9.0) and ionic strengths (mu= 0.08 and 0.5) examined, the emulsifying ability of cruciferin was worse than that of glycinin, except at mu= 0.08 and pH 7.6. The emulsifying abilities of cruciferin and glycinin did not correlate with thermal stability and surface hydrophobicity. Higher protein concentration, higher heating temperature, higher pH, and lower ionic strength were observed to produce harder gels from cruciferin. Gel hardness partly correlated with the structural stability of cruciferin.  相似文献   

13.
Soy protein has shown great potential for use in biobased adhesives. β-Conglycinin is a major component of soy protein; it accounts for 30% of the total storage protein in soybean seeds. β-Conglycinin was isolated and purified, and its subunits' (β, α'α) physicochemical and adhesive properties were characterized. Crude β-conglycinin was isolated from soy flour and then purified by the ammonium sulfate precipitation method. The α'α and β subunits were isolated from the purified β-conglycinin by anion exchange chromatography. Yields of α'α subunits and β subunits from 140 g of soy flour were 1.86 g (1.3%) and 0.95 g (0.67%), respectively. The minimum solubility for α'α subunits, β subunits, and β-conglycinin occurred in pH ranges of 4.1-5.4, 3.5-7.0, and 4.8-5.3, respectively. Transmission electron microscopy showed that the β subunits existed as spherical hydrophobic clusters, whereas α'α subunits existed as uniformly discrete particles at pH 5.0. Differential scanning calorimetry showed that β subunits had higher thermal stability than α'α subunits. The pH had a lesser effect on adhesion strength of the β subunits than on that of the α'α subunits. The adhesives made from β subunits also showed greater water resistance than those from α'α subunits and β-conglycinin. Soy protein rich in β subunits is likely a good candidate for developing water-resistant adhesives.  相似文献   

14.
为提升大豆分离蛋白(soy protein isolate,SPI)的功能性质,该文引入大豆可溶性多糖(soybean soluble polysaccharides,SSPS),构建大豆分离蛋白-大豆可溶性多糖体系(SPI-SSPS),研究动态高压微射流(dynamic high-pressure microfluidization,DHPM)处理对SPI-SSPS功能特性的影响。分别采用0,60,100,140和180 MPa的 DHPM压力处理SPI-SSPS,探究不同压力对SPI-SSPS起泡特性、乳化特性、溶解性、粒度分布和表面疏水性的影响。结果表明,DHPM处理能提高SPI的溶解性和起泡特性,且SSPS的存在能显著提高DHPM对SPI功能性质的改善效果(P<0.05)。100和60 MPa的DHPM处理能使SPI-SSPS呈现较高的起泡能力和起泡稳定性,分别为未处理样品的1.2和2.4倍。140 MPa的DHPM处理使SPI-SSPS溶解性较强,为未处理样品的1.8倍。然而,DHPM处理会显著降低SPI-SSPS的乳化特性、粒径和表面疏水性(P<0.05)。随着处理压力的增加,SPI-SSPS的粒度和表面疏水性逐渐降低,在180MPa的DHPM处理下SPI-SSPS具有较小的粒径和较低的荧光强度。综上所述,DHPM结合SSPS改性技术可用于改善SPI的功能性质(如溶解性、起泡性),促进SPI在食品工业的应用。该文的研究结果可为SPI的功能性质改性提供参考。  相似文献   

15.
The functional properties of proteins from Tarom and Shiroodi cultivars were determined and compared with technological aspects of food and nutraceutical applications. Shiroodi has higher protein content than Tarom, and the yields of protein obtained were 72.88 and 66.36%, respectively. Nitrogen solubilities of rice bran protein of Tarom were more than Shiroodi at all pH levels. In addition, higher solubility was found in acidic or alkaline conditions. Although the rice bran proteins had lower emulsifying properties than bovine serum albumin, they had similar foaming properties in comparison with egg white. Tarom isolates had a significantly higher solubility, emulsifying property, and foaming stability and greater surface properties than Shiroodi isolates. The results showed the surface hydrophobicities of rice bran protein were greater than casein and ovalbumin and lower than other proteins such as bovine serum albumin. Water and oil absorption capacities were 1.03 and 1.66 for Tarom and 87.3 and 75.3 for Shiroodi, respectively. The bulk densities of Tarom and Shiroodi were also 0.55 and 0.53 g/mL, which make them suitable for weaning food and other industrial applications. As a result, these rice bran proteins showed higher hydrophobicity than that of other rice bran protein varieties as well as more functionality. Thus, they have good potential in the food and pharmaceutical industries.  相似文献   

16.
In this contribution, we have analyzed the effect of different strategies, such as change of pH (5 or 7) or ionic strength (at 0.05 and 0.5 M), and addition of sucrose (at 1 M) and Tween 20 (at 1 x 10(-4) M) on interfacial characteristics (adsorption, structure, dynamics of adsorption, and surface dilatational properties) and foam properties (foam capacity and stability) of soy globulins (7S and 11S at 0.1 wt %). We have observed that (1) the adsorption (presence of a lag period, diffusion, and penetration at the air-water interface) of soy globulins depends on the modification in the 11S/7S ratio and on the level of association/dissociation of these proteins by varying the pH and ionic strength (I), the effect of sucrose on the unfolding of the protein, and the competitive adsorption between protein and Tween 20 in the aqueous phase. The rate of adsorption increases at pH 7, at high ionic strength, and in the presence of sucrose. (2) The surface dilatational properties reflect the fact that soy globulin adsorbed films exhibit viscoelastic behavior but do not have the capacity to form a gel-like elastic film. The surface dilatational modulus increases at pH 7 and at high ionic strength but decreases with the addition of sucrose or Tween 20 into the aqueous phase. (3) The rate of adsorption and surface dilatational properties (surface dilatational modulus and phase angle) during adsorption at the air-water interface plays an important role in the formation of foams generated from aqueous solutions of soy globulins. However, the dynamic surface pressure and dilatational modulus are not enough to explain the stability of the foam.  相似文献   

17.
Different deamidation conditions for the Z19 alpha-zein were studied in order to find the best conditions for the development of the emulsifying properties. Alkaline deamidation was chosen, and the effects on the peptide bond cleavage, secondary structure, emulsifying properties, and surface hydrophobicity were studied. The Z19 alpha-zein was deamidated by using 0.5 N NaOH containing 70% ethanol at 70 degrees C for 12 h. A deamidation degree (DD) of 60.6 +/- 0.5%, and a degree of hydrolysis (DH) of 5 +/- 0.5% were achieved. Analysis by far-UV circular dichroism showed that the denaturation was mainly promoted by the high temperature used during the incubation. The adequate balance between the DD and the DH results in an effective emulsifying property improvement for the Z19 alpha-zein. Thus, after the deamidation treatment, the surface hydrophobicity decreased from 9.5 x 104 +/- 6.8 x 103 to 46 x 104 +/- 2.1 x 103, and the emulsion stability increased from 18 +/- 0.7% to 80 +/- 4.7% since the oil globules stabilized by the modified protein were smaller (57.7 +/- 5.73 nm) and more resistant to coalescence than those present in the native protein emulsions (1488 +/- 3.92 nm).  相似文献   

18.
Protein quality, based on its subunit composition, in okara obtained as a byproduct during hydrothermal cooking of soy milk was assessed. The composition of 7S and 11S protein fractions was correlated with the physicochemical properties of protein in okara produced from six soybean varieties. The basic 7S globulin (Bg7S) and 11S protein were two main proteins in okara. Investigated soybean genotypes produced okara with mainly acidic A(5) and basic B(1,2,4) polypeptides of 11S proteins. Soybean 11S content was not an indicator of okara protein recovery or extractability. Of all tested relationships, extractable soluble protein content of okara was influenced only by soybean Bg7S (r = 0.86; p < 0.05) and its light subunit contents (r = 0.93; p < 0.05). Okara protein recovery depended on Bg7S heavy subunit content in soybeans (r = 0.81; p < 0.05). The high quantity of vegetable protein in okara (around 35%) and very high protein extractability (around 85%) qualify this byproduct for potential application in food preparation as a functional ingredient.  相似文献   

19.
空化射流对大豆分离蛋白结构及乳化特性的影响   总被引:5,自引:5,他引:0  
为了探究空化射流处理对大豆分离蛋白结构及乳化特性的影响。该研究将不同浓度(2%和5%)的大豆分离蛋白溶液在不同时间(2、4、6、8、10 min)下进行空化射流处理,以未经处理大豆分离蛋白溶液作为对照,探究空化射流处理对大豆分离蛋白结构和乳化特性的影响。结果表明:适当时间的空化射流处理可以降低大豆分离蛋白的含硫氨基酸含量、溶液平均粒径和7S亚基、A亚基含量,引起蛋白乳液的ζ-电位绝对值和界面蛋白含量的升高和弹性模量出现增大的趋势,进而显著增强蛋白乳化活性和乳化稳定性,2%浓度下相比最低值提高248.94%和95.58%,5%浓度下相比最低值提高70.29%和101.83%,并且其改性处理的最佳时间受蛋白浓度所影响。这表明空化射流物理场可以通过改变大豆分离蛋白的结构和乳液界面特性调节其乳化活性,为大豆分离蛋白改性和空化射流物理场在食品领域的应用提供前期基础。  相似文献   

20.
Functional, nutritional, and thermal properties of freeze-dried protein powders (FPP) from whole herring (WHP), herring body (HBP), herring head (HHP), herring gonad (HGP), and arrowtooth flounder fillets (AFP) were evaluated. The FPP samples have desirable nutritional and functional properties and contained 63-81.4% protein. All FPP samples had desirable essential amino acid profiles and mineral contents. The emulsifying and fat adsorption capacities of all FPP samples were higher than those of soy protein concentrate. The emulsifying stability of WHP was lower than that of egg albumin but greater than that of soy protein concentrate. Thermal stability of the FPP samples is in the following order: HGP > HBP > WHP > HHP > AFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号