共查询到16条相似文献,搜索用时 78 毫秒
1.
基于Sentinel-1雷达影像的玉米倒伏监测模型 总被引:5,自引:3,他引:5
在玉米发生倒伏灾害后,为定量监测区域尺度下的玉米倒伏程度,该研究以2017年8月8日因强风和强雨造成大面积玉米倒伏的小汤山国家精准农业研究示范基地作为研究区,提取倒伏前后Sentinel-1A雷达影像的多种强度信息,与实测倒伏样本关联分析,筛选出玉米倒伏前后最佳敏感后向散射系数。采用自然高与植株高的比值作为倒伏程度评价指标并构建比值公式,最终得到倒伏监测模型。结果表明,倒伏前后玉米植株高度的最优敏感后向散射系数分别为σVH和σVV+VH。32个建模点的实测差值结果与模拟差值结果的R~2为0.896(P0.01)。15个检验样本点和总样本点的倒伏程度分类准确度均达到100%。模型求解的自然高与植株高的比值与实测的比值总体相关性达到0.899。其中,中度倒伏类型的相关性最好,严重倒伏次之,轻度倒伏最差。该研究结果表明,在倒伏发生后,基于Sentinel-1A雷达后向散射系数构建的倒伏监测模型能在区域尺度下有效的实现玉米倒伏程度的分级监测。 相似文献
2.
倒伏是造成小麦减产和品质下降的主要原因之一。为快速准确地提取小麦倒伏面积,给农业保险理赔及灾后应急处置提供数据支持,该研究采用无人机遥感平台获取小麦倒伏后的冠层红绿蓝(Red-Green-Blue, RGB)可见光图像,并进行数字表面模型(Digital Surface Model,DSM)图像提取,计算了过绿植被(Excess Green, EXG)指数,利用ArcGIS中的镶嵌工具将不同图像特征进行融合,得到DSM+RGB融合图像和DSM+EXG融合图像,利用最大似然法和随机森林法对2种特征融合图像进行监督分类提取小麦倒伏面积,并与仅基于RGB可见光图像和DSM图像提取倒伏面积结果对比。结果表明,2种方法对4种图像进行小麦倒伏面积提取的整体趋势一致,且最大似然法提取效果整体优于随机森林法,基于最大似然法对RGB图像、DSM图像、DSM+RGB特征融合图像、DSM+EXG特征融合图像提取倒伏小麦面积的整体精度分别为77.21%、93.37%、93.75%和81.78%,Kappa系数分别为0.54、0.86、0.87和0.64,对比分析发现DSM+RGB特征融合图像提取小麦倒伏面积精度最高。该研究表明通过图像特征融合的方法能够有效提取倒伏小麦信息,为快速提取小麦倒伏面积提供参考。 相似文献
3.
4.
双极化雷达反演裸露地表土壤水分 总被引:1,自引:2,他引:1
为了快速高效地获取大面积地表土壤水分,本文提出一种适用于双极化SAR(synthetic aperture rader)的裸露地表土壤水分反演经验模型。首先通过AIEM(advanced integral equation model)模型数值模拟和回归分析,提出一种新的粗糙度参数,将2个传统的粗糙度参数简化为1个参数;然后模拟地表土壤水分与雷达后向散射系数的关系,从而建立裸露地表的经验散射模型,模型的未知参数仅为粗糙度参数和土壤体积含水量,通过双极化的雷达数据即可实现土壤水分的反演。通过2008年甘肃张掖黑河流域实测数据对模型进行了初步验证,发现在入射角大于25°时,模型反演值与实测值有着良好的相关关系(相关系数为0.745)。该模型仅需双极化的雷达数据就能实现土壤水分的反演,无需测量地面粗糙度,尤其适用于大面积干旱区域的地表土壤水分的获取。 相似文献
5.
冬小麦病害与产量损失的多时相遥感监测 总被引:6,自引:8,他引:6
为了开展农作物病害遥感监测与产量损失评估,该文以北京郊区大田生产条件下的冬小麦条锈病、白粉病的为研究对象,获取了2007年4月10日、4月26日、5月12日、5月28日共四期Landsat TM卫星影像,准同步地测量了试验地块的冠层光谱数据及配套农学数据。利用该4个时相的遥感数据,分析了试验区的冬小麦条锈病、白粉病在主要生育期的光谱特征及其变化,与对照地块相比,病害小麦在可见光和短波红外波段的光谱反射率降增大,近红外波段反射率减小,红边则会向短波方向移动,红边振幅减小,NDVI值减小。并利用冬小麦病害发生前期(4月10日,4月26日)的卫星遥感数据建立了作物产量的早期预测模型,结合实测的产量数据,定量计算了条锈病和白粉病的产量损失,结果表明两个白粉病和条锈病小麦地块的减产幅度超过了30%。 相似文献
6.
7.
基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产 总被引:3,自引:4,他引:3
发展和构建高精度的作物遥感估产模型,对于国家制订粮食进出口政策和保障粮食安全具有重要意义.尝试利用支持向量回归方法(SVR)构建遥感估产模型,首先利用北京郊区2004年和2007年冬小麦主要生育期多时相Landsat TM影像生成的归一化植被指数,通过SVR构建遥感估产模型进行产量估算.然后针对模型的稳健型和预报能力进行交叉验证,并与常规的多元回归方法进行对比.结果表明,利用SVR方法构建的遥感估算模型有效地提高了估算精度,与多元回归方法相比,2004年和2007年决定系数分别提高0.2162、0.2158,均方根误差分别降低0.1682、0.2912.因此基于SVR和多时相遥感数据构建估产模型用于冬小麦估产是可行、有效的,为应用多时相遥感数据进行冬小麦估产提供了一种方法. 相似文献
8.
基于小型无人机遥感的玉米倒伏面积提取 总被引:8,自引:10,他引:8
该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著低于基于色彩特征提取方法的。该研究结果为应用无人机彩色遥感图像准确提取倒伏玉米面积提供了依据和方法。 相似文献
9.
利用多时相遥感影像监测季节性裸露农田 总被引:5,自引:0,他引:5
季节性裸露农田是北京地区冬春季大气“土壤尘”的主要来源。而农田季节性裸露的快速、准确监测是治理方案制定与实施的依据。根据北京地区裸露农田种植作物和其它地表覆盖类型的物候特征之间的差异,选用2004年春夏季3个时相的TM遥感影像数据,利用垂直植被指数,同时结合北京地区的DEM数据以及北京地区的行政边界矢量数据,建立了北京地区季节性裸露农田遥感监测专家模型。监测结果表明北京市2003年冬至2004春裸露农田面积为87362.57 hm2,主要分布在延庆、顺义、密云、通州等区县。依据监测结果,提出了季节性裸露农田防治建议。 相似文献
10.
气象卫星遥感监测小麦苗情应用的研究 总被引:3,自引:0,他引:3
1986至1992年,收集气象卫星遥感资料图片(字符型数字图像)监测小麦苗情(下称卫感图片)和农业部门调查小麦苗情类型(下称农调苗情)同步进行。并介绍剔除卫感图片的误差因素的方法,找出两者关系指标,使卫感图片在今后小麦监测过程中,更充分地发挥作用。 相似文献
11.
小麦籽粒蛋白质含量遥感监测研究进展 总被引:3,自引:1,他引:3
遥感是实现农田作物快速、无损监测的重要手段,利用遥感技术在小麦生长的中后期对籽粒蛋白质含量进行预测对于指导小麦后期氮素调控、实现分类收获和按质收购具有重要意义。该文概述了小麦籽粒蛋白质含量检测方法的发展过程,对国内外运用遥感技术监测小麦籽粒蛋白质含量提出的敏感波段、光谱特征参量、反演模型及分析方法进行了综述,通过分析研究中存在的问题,明确了今后在利用遥感技术监测小麦籽粒蛋白质含量方面应重点解决的问题,并展望了该技术的发展前景。 相似文献
12.
基于无人机遥感多光谱影像的棉花倒伏信息提取 总被引:2,自引:1,他引:2
为在棉花发生倒伏灾害后快速获取田块尺度下的受灾信息,该文以2017年8月21日强风暴雨导致大面积棉花倒伏的新疆生产建设兵团第八师135团的部分田块作为研究区,由无人机遥感试验获取倒伏后的多光谱影像,通过分析倒伏和正常棉花的光谱反射率差异提取了多种植被指数和主成分纹理特征,结合地面调查样本建立了3种花铃期倒伏棉花的Logistic二分类模型并进行了精度评价和验证。结果表明:棉花倒伏前后在可见光波段的反射率差异微小,而在红边和近红外波段的反射率明显降低0.12~0.20;以第一主成分均值(PCA1_mean)建立的Logistic二分类纹理模型效果最优,在测试集上分类结果的准确率为91.30%,ROC(receiver operating characteristic)曲线距左上角点最近,AUC(area under the roc curve)值为0.80。通过将该模型应用于试验区影像,分类制图效果良好且符合棉田倒伏症状特点。该研究可为无人机多光谱遥感棉花灾损评估提供参考。 相似文献
13.
基于NDVI加权指数的冬小麦种植面积遥感监测 总被引:8,自引:2,他引:8
该文针对农业信息服务中冬小麦种植面积调查业务的现状与需求,提出了一种基于NDVI(normal difference vegetation index)时间序列的冬小麦NDVI加权指数(WNDVI,weighted NDVI index)影像算法,可在训练样本、验证样本选择的基础上实现冬小麦面积的自动提取,并以河北省安平县及周边地区2013-2014年度冬小麦面积提取为例,采用GF-1/WFV(wide field view)数据进行了算法实现。算法的主要思路是在时序影像基础上,通过冬小麦NDVI加权指数影像的构建,扩大冬小麦地类与其他地类的差异,结合自适应的阈值获取方法,区分冬小麦地类,获取冬小麦作物面积。算法包括冬小麦时间序列影像的获取、基于网格的样本点设置、构建冬小麦 NDVI 加权指数影像、迭代确定冬小麦NDVI加权指数提取阈值、精度验证这5个部分。影像的获取根据冬小麦的生长时间确定,保证每月1景GF-1/WFV无云影像,并进行预处理及NDVI计算;同时将研究区划分为一定数量的网格,每个网格再等分为2×2个子网格,根据目视解译、专家知识、实地调查等方法,确定左上网格中心点及右下网格中心点的地物类型。统计该期所有左上网格点冬小麦及其他地物的NDVI均值,冬小麦NDVI大于其他地物的将该期影像的权值设置为1,否则设置为?1,将所有时相NDVI影像进行加权平均,即可获取冬小麦NDVI加权指数影像。获取冬小麦NDVI加权指数影像后,还需设置合适的阈值提取冬小麦。该文选用右下网格点目视解译分类结果作为阈值提取依据,具体方法是将冬小麦指数从小到大按照一定间隔划分,作为冬小麦 NDVI 加权指数提取阈值,将各阈值二值法运用,与右下网格点的冬小麦提取的目视解译结果对比,精度最高的就是最优冬小麦 NDVI 加权指数分割阈值。在所有网格中,以初始识别获取的冬小麦面积为准,等概率选择10个样方作为精度验证样方进行验证。精度验证结果表明分类总体精度达到94.4%,Kappa系数达0.88。该文通过构建冬小麦NDVI加权指数,将比较复杂的多个参数转换为一个参数,并且农学意义明确,相比传统的NDVI时序影像进行冬小麦面积的提取,具有自动化程度高、面积提取精度高、分类结果稳定的特点,已经在全国农作物面积遥感监测业务中进行了应用。 相似文献
14.
基于GF-1/WFV数据的冬小麦条锈病遥感监测 总被引:2,自引:2,他引:2
条锈病是冬小麦常见病害,利用遥感影像对条锈病病害区域进行准确监测具有重要意义。该文利用GF-1/WFV影像,结合条锈病地面光谱数据分析,采用冬小麦条锈病遥感监测指数(wheat stripe rust index,WSRI)对河南西华县冬小麦条锈病发病范围进行了估测。首先,利用冬小麦NDVI加权指数(weighted NDVI index,WNDVI)获取冬小麦种植区域。其次,利用影像4个波段反射率之和提取不同冬小麦品种的分布范围,值较高的为条锈病高抗品种(郑麦系列),较低的则是条锈病易感品种(矮壮系列)。再次,构建冬小麦条锈病指数(wheat stripe rust index,WSRI),结合地面实地调查的条锈病分布数据,通过设定合理的WSRI指数划分阈值,提取条锈病染病区域并进行精度验证。结果表明,研究区内小麦条锈病空间分布识别的总体精度在84.0%以上,具有区域监测应用的潜力。该方法简单,可操作性强,表明宽波段GF-1影像结合WSRI指数的技术,是一种比较可行的小麦条锈病遥感监测方案。 相似文献
15.
为探究麦田垄间背景对无人机多光谱小麦赤霉病监测精度的影响,该研究以江苏省镇江市农科院灌浆期小麦为研究对象,利用大疆M600 Pro无人机搭载RedEdge-MX多光谱相机获取小麦冠层多光谱影像。通过筛选与小麦赤霉病相关性最高的植被指数(vegetation indexes,VIs):MSR和CRI2植被指数,并采用大津法(Nobuyuki Otsu method,OTSU)、阈值分割法和支持向量机(support vector machine,SVM)等方法对小麦赤霉病遥感图像进行精细化语义分割,降低田块边缘阴影背景和染病麦穗之间的误判率。试验结果表明:目视解译阈值分割法剔除背景的效果最好(总体精度:92.06 %,Kappa系数:0.84),OTSU阈值分割法(总体精度:90.52%,Kappa系数:0.81)效果次之。采用偏最小二乘回归分别建立小麦病情指数(disease index,DI)与VIs、纹理特征(texture features,TFs)和VIs&TFs小麦赤霉病监测模型,其中VIs&TFs模型监测精度最高,剔除垄间背景前预测模型训练集的决定系数(coefficient of determination,R2)为0.73,均方根误差(root mean square error,RMSE)为5.52,相对分析误差(relative percent deviation,RPD)为2.01,验证集的R2为0.68,RMSE为6.21,RPD为1.96;剔除垄间背景后VIs&TFs模型监测精度依然最高,训练集的R2为0.75,RMSE为5.58,RPD为2.13,验证集的R2为0.77,RMSE为7.13,RPD为2.11。综上所述,基于垄间背景特征的精细化语义分割有效地提高了小麦赤霉病的监测精度,可以直观地了解小麦病情分布情况,可对后续变量施药提供参考依据。 相似文献
16.
为提高小麦条锈病的遥感监测精度,该研究利用分数阶微分能够突出光谱的细微信息以及描述光谱数据间微小差异的优势,在对条锈病胁迫下小麦冠层光谱数据进行分数阶微分处理的基础上,构建了两波段和三波段分数阶微分光谱指数,并将其应用于小麦条锈病的遥感探测。研究结果表明,1.2阶次微分光谱与小麦条锈病冠层病情严重度的相关性最高,较原始反射率光谱、一阶微分光谱和二阶微分光谱分别提高了20.9%、3.9%和20.5%;基于分数阶微分光谱指数的最优分数阶次及其对应波长构建的三波段分数阶微分光谱指数对小麦条锈病的探测能力优于两波段分数阶微分光谱指数,其中分数阶微分光化学指数与冠层病情严重度的相关系数达到0.875;以分数阶微分光谱指数为自变量构建的高斯过程回归(Gaussian Process Regression,GPR)模型对小麦条锈病冠层病情严重度的预测精度优于反射率光谱指数,其训练数据集及验证数据集病情指数(Disease Index,DI)预测值和实测值间的决定系数较反射率光谱指数分别提高了3.8%和19.1%,该研究结果对进一步实现作物健康状况大面积高精度遥感监测具有重要意义。 相似文献