首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 70 毫秒
1.
基于知识的视觉导航农业机器人行走路径识别   总被引:7,自引:5,他引:7  
目前的农业生产方式引起了环境污染、生态恶化等诸多问题,研制具有精确作业能力的视觉导航农业机器人因而被较多关注。针对导航视觉系统采集的农田非结构化自然环境彩色图像,探讨了用于行走路径识别的适宜的彩色特征,并结合农田作业时农业机器人行走路径的特点,运用路径知识启发机制识别出行走路径。与传统的阈值分割算法的对比处理试验表明,此识别算法可以明显地改善路径识别效果。  相似文献   

2.
基于K-means聚类的柑橘红蜘蛛图像目标识别   总被引:3,自引:3,他引:3  
为快速检测红蜘蛛虫害,该研究采用基于Lab颜色模型中a(红/绿)、b(黄/蓝)层信息的K-means聚类法识别彩色图像中的红蜘蛛。试验选取8幅具有不同清晰度的柑橘红蜘蛛图像,采用基于Sobel边缘检测算子的评价函数计算图像清晰度评价值以评价图像清晰度,对比采用灰度法和包含2、3、4或5个聚类中心的K-means聚类法的目标识别效果和识别效率。结果表明,灰度法对8幅图像中红蜘蛛目标识别率平均值为29%,误判率平均值为201%,无法应用于复杂背景图像中的红蜘蛛目标识别。包含5个聚类中心的K-means聚类法对清晰度较高的图像识别率为100%,误判率为0,对清晰度较低的图像识别率为88%,误判率为0;当图像尺寸较小时,包含4个聚类中心的K-means聚类法识别效率与灰度法相当;当图像尺寸较大时,重复计算聚类中心导致识别耗时较长;基于Lab颜色空间的识别算法无法有效识别其他颜色的红蜘蛛,继续研究的方向为引入红蜘蛛形态信息以提高识别准确率和优化聚类中心的选取以降低识别耗时。  相似文献   

3.
识别作物行中心线并实现喷药喷头的自动对准是精准施药系统实现的关键技术。为克服作物行识别算法的单一性和适应性不强的缺点,该文以生长早中期的玉米图像为研究对象,利用改进的过绿特征法和改进的中值滤波算法分割出作物行,减少处理时间和去除噪声;然后在行提取时只保留包含作物行信息的中间作物行,通过随机Hough变换检测出作物行中心线,并根据世界坐标与图像坐标的转换和相对距离得到偏差信息:最后实现了系统的硬件搭建并给出了实际运行效果。不同图像的试验和处理结果表明,该算法在背景分割、作物行提取和偏差信息获取方面具有一定的优势,可适用于不同作物及不同视野图像的作物行算法识别,对精准施药的研究具有一定的参考价值。  相似文献   

4.
土壤学始于对土壤剖面及其形态特征的观察,剖面发生层的划分与发生层边界特征的描述是土壤调查的基础。实地划分发生层需要丰富的土壤学实践经验,存在主观和缺乏统一划分标准的问题。以紫色土剖面图像为研究对象,采用K-means聚类和图像分割技术,结合图像的颜色特征(CIE Lab色彩空间)和纹理特征(Entropy)识别紫色土剖面发生层边界,并与实地划分的结果进行比较。结果表明:(1)CIE Lab色彩空间的a、b通道和Entropy纹理特征,可以划分出供试剖面的主要发生层(A、B、C)和基岩(R);(2)聚类识别的发生层数量和发生层深度与实地识别的结果基本一致;除Z2剖面的C层和Z6剖面的Ap层聚类识别与实地识别的发生层下边界深度相差较大(分别为13 cm和8 cm)外,其余发生层下边界深度相差均在3 cm以内;(3)聚类识别的发生层边界形状更为不规则,明显度更为模糊。K-means聚类和图像分割技术实现了紫色土剖面发生层边界的客观识别,可为土壤剖面智能辨识系统的开发提供科学参考。  相似文献   

5.
机器人采摘苹果果实的K-means和GA-RBF-LMS神经网络识别   总被引:2,自引:7,他引:2  
为进一步提升苹果果实的识别精度和速度,从而提高苹果采摘机器人的采摘效率。提出一种基于K-means聚类分割和基于遗传算法(genetic algorithm,GA)、最小均方差算法(least mean square,LMS)优化的径向基(radial basis function,RBF)神经网络相结合的苹果识别方法。首先将采集到的苹果图像在Lab颜色空间下利用K-means聚类算法对其进行分割,分别提取分割图像的RGB、HSI颜色特征分量和圆方差、致密度、周长平方面积比、Hu不变矩形状特征分量。将提取的16个特征作为神经网络的输入,对RBF神经网络进行训练,以得到苹果果实的识别模型。针对RBF神经网络学习率低、过拟合等不足,引入遗传算法对RBF隐层神经元个数和连接权值进行优化,采取二者混合编码同时进化的优化方式,最后再利用LMS对连接权值进一步学习,建立新的神经网络优化模型(GA-RBF-LMS),以提高神经网络的运行效率和识别精度。为了获得更精确的网络模型,在训练过程中,苹果果实连同树枝、树叶一块训练;得到的模型在识别过程中,可一定程度上避免枝叶遮挡对果实识别的影响。为了更好地验证新方法,分别与传统的BP(back propagation)和RBF神经网络、GA-RBF优化模型比较,结果表明,该文算法对于遮挡、重叠果实的识别率达95.38%、96.17%,总体识别率达96.95%;从训练时间看,该文算法虽耗时较长,用150个样本进行训练平均耗时4.412 s,但训练成功率可达100%,且节省了人工尝试构造网络结构造成的时间浪费;从识别时间看,该文算法识别179个苹果的时间为1.75 s。可见GA-RBF-LMS网络模型在运行效率和识别精度较优。研究结果为苹果采摘机器人快速、精准识别果实提供参考。  相似文献   

6.
基于K-means聚类的植物叶片图像叶脉提取   总被引:1,自引:4,他引:1  
植物的叶片是植物最基本、最主要的生命活动场所。叶脉的提取与分析对叶片和整株植物结构的分析有一定的应用价值。该文提出一种基于K-means聚类(clustering)的叶脉提取算法。该算法首先对叶片图像的HSI彩色空间中的I信息进行K-means聚类处理,根据聚类的结果提取叶片边界,并将叶片图像分为受光均匀和受光不均匀的2类。对于受光均匀的叶片图像在聚类结果中直接提取叶脉,而受光不均匀的叶片图像则需去除部分叶肉后再进行一次K-means聚类提取叶脉。结果表明:该算法能有效地降低叶脉提取的错分率。  相似文献   

7.
基于高斯HI颜色算法的大田油菜图像分割   总被引:1,自引:3,他引:1  
针对自然条件下光照条件变化给大田油菜图像分割带来的问题,该文研究了油菜图像的高斯HI颜色分割算法,为作物生长发育周期的自动识别提供前期准备。已有统计结果表明,在仅保留绿色作物的图像中,不同色调值的像素数量服从高斯分布。该文将去掉背景信息的样本数据从RGB颜色模型转换至HSI颜色模型后,统计各个光强的所有像素对应的色调值,并计算其期望值和方差,依次得出所有强度所对应色调值的期望值和方差,建立出油菜作物色调强度查找表(hue intensity-look up table)。在此基础上,计算每个像素的色调值和期望值之间的差值,若差值小于阈值,则像素被分割为作物,否则为背景。为了在高斯HI颜色分割算法中确定合适的阈值,该研究选取了45幅不同天气状况(晴天、阴天和雨天)不同发育阶段(苗期、三叶期和四叶期)的油菜图像作为样本,探讨阈值的选取与分割结果的关系。结果表明阈值在[2.4,2.6]内分割效果最佳,油菜目标的形状特征完整度最好。为了对图像分割结果进行评价,分别利用高斯HI颜色模型、CIVE(color index of vegetation extraction)、EXG-EXR(excess green-excess red)、EXG(excess green)和VEG(vegetation)算法对15幅不同天气状况的图像进行分割。从视觉效果上来看,高斯HI算法仅需少量样本,即可达到满意分割效果。与其他方法相比,高斯HI颜色分割算法的误分割率(misclassification error,ME)仅为1.8%,相对目标面积误差(relative object area error,RAE)仅为3.6%,均优于其他4种算法的试验结果。在分割结果稳定性上,高斯HI颜色算法表现最好,其ME和RAE值的标准差最低,分别为0.7%和4.5%。试验结果表明,高斯HI颜色算法能取得较好的分割效果,而且对光照条件变化并不敏感,同时,能够充分保留油菜形状特征的完整性,为后期油菜生长发育周期的自动识别提供可靠数据。  相似文献   

8.
基于改进K-means聚类算法的大田麦穗自动计数   总被引:2,自引:5,他引:2  
单位种植面积的小麦麦穗数量是评估小麦产量和小麦种植密度的一个重要参量。为了实现高效、自动地麦穗计数,该文提出了基于改进K-means的小麦麦穗计数方法。该方法建立从图像低层颜色特征到图像中包含麦穗的一个直接分类关系,从而不需要再对图像进行分割或检测。以颜色特征聚类为基础的这种方法能够估计麦穗在空间局部区域中数量,并且在不需要训练的情况下更具有可扩展性。统计试验结果表明,该文算法能够适应不同光照环境,麦穗计数的准确率达到94.69%,超过了传统基于图像颜色特征和纹理特征分割的麦穗计数方法 93.1%的准确率。  相似文献   

9.
图像拼接可以建立宽视角的高分辨率图像,对实现农业智能化有重要作用。基于Kinect传感器的图像拼接方法利用彩色和深度双源信息,能够有效避免图像缺失、亮暗差异、重影等拼接错误,但是存在拼接时间较长和目标植株不明显等情况。针对这一问题,该文提出一种基于Kinect传感器彩色和深度信息的目标植株图像快速拼接方法。首先用K-means聚类算法和植株深度信息提取彩色图像中有效植株区域,再采用SURF(speeded up robust features)算法进行特征点提取,利用相似性度量进行特征点匹配并根据植株深度数据去除误匹配,由RANSAC(randomsampleconsensus)算法寻找投影变换矩阵,最后采用基于缝合线算法的多分辨率图像融合方法进行拼接。室内外试验结果表明:该文图像拼接方法更能突显出目标植株且极大缩短了拼接时间,该方法图像拼接时间只需3.52 s(室内)和7.11 s(室外),较基于深度和彩色双信息特征源的Kinect植物图像拼接方法时间缩短了8.62 s(室内)和38.56 s(室外),且平均匹配准确率达96.8%。该文拼接后图像信息熵、清晰度、互信息、空间频率平均分别为6.34、50.36、11.70、11.28,图像质量较传统方法均有提高。该研究可为监测农业植株生长状态、精确喷洒药物提供参考。  相似文献   

10.
基于MFICSC算法的生菜图像目标聚类分割   总被引:1,自引:1,他引:1  
生菜图像目标分割是基于图像处理的生菜生理信息无损检测的前提。为了解决因生菜富含水分使得图像采集镜头反光而导致生菜叶片图像灰度分布不均的问题,该文采用一种修正的图像灰度均衡算法对生菜图像进行灰度均衡处理,应用混合模糊类间分离聚类算法(MFICSC)进行生菜图像目标分割,使总体类间距离最大化,能够同时生成模糊隶属度和典型值,对处理噪声数据和克服一致性聚类问题均表现良好。分别采用MFICSC算法和Otsu算法进行了生菜图像目标分割对比试验,结果表明MFICSC算法具有较好的聚类准确度,效果优于传统Otsu分割算法。  相似文献   

11.
基于卷积神经网络的温室黄瓜病害识别系统   总被引:11,自引:14,他引:11  
基于图像处理和深度学习技术,该研究构建了一个基于卷积神经网络的温室黄瓜病害识别系统。针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color features,CCF)及其检测方法,通过将该颜色特征与传统区域生长算法结合,实现了温室黄瓜病斑图像的准确分割。基于温室黄瓜病斑图像,构建了温室黄瓜病害识别分类器的输入数据集,并采用数据增强方法将输入数据集的数据量扩充了12倍。基于扩充后的数据集,构建了基于卷积神经网络的病害识别分类器并利用梯度下降算法进行模型训练、验证与测试。系统试验结果表明,针对含有光照不均匀和复杂背景等噪声的黄瓜病害图像,该系统能够快速、准确的实现温室黄瓜病斑图像分割,分割准确率为97.29%;基于分割后的温室黄瓜病斑图像,该系统能够实现准确的病害识别,识别准确率为95.7%,其中,霜霉病识别准确率为93.1%,白粉病识别准确率为98.4%。  相似文献   

12.
对靶喷雾是目前农业信息技术领域的一个研究热点。根据靶标的尺度不同,对靶喷雾有不同的层次。对作物植株单体甚至是单个叶片内病害区域进行对靶喷雾是当前的一个难点。该文研发了一套温室内移动对靶喷雾系统,实现了对黄瓜等篱架型植物以0.2 m×0.2 m区域为靶标的精准喷雾。系统主要由移动平台、机械臂、病害信息诊断和变量喷嘴4部分组成。移动平台采用高架导轨安装模式,可根据黄瓜垄地位置停车。4自由度的直角坐标系机械臂吊装在平台下,与喷杆配合每垄可实现1.2 m×1.2 m区域的作业。病害信息诊断以图像分析为主要手段,构建了双目视觉图像采集系统,将1.2 m×1.2 m的采集区域划分为36个0.2 m×0.2 m的单元,根据分析结果确定每个单元的病害等级。1.2 m长的喷杆上均布6个喷嘴,每个喷嘴每次对应一个区域单元,并根据病害等级程度控制喷嘴的喷雾时间来实现变量喷雾。  相似文献   

13.
为实现移动机器人香蕉园巡检自动导航,研究提出了一种基于双目视觉的香蕉园巡检路径提取方法.首先由机器人搭载的双目相机获取机器人前方点云,进行预处理后对点云感兴趣区域进行二维投影并将投影结果网格化,得到网格地图;然后采用改进的K-means算法将道路两侧香蕉树分离,其中初始聚类中心通过对网格地图进行垂直、水平投影以及一、二...  相似文献   

14.
基于混沌优化K均值算法的马铃薯芽眼的快速分割   总被引:1,自引:1,他引:1  
为提高芽眼分割的准确性,该文实现了基于混沌优化K均值算法的马铃薯芽眼的快速分割。K均值算法具有有效性及易于实现的优点,但是容易陷入局部最优值的缺点造成了其聚类结果的不准确。混沌系统由于其遍历性和不重复性,能够以较快的速度执行全局搜索。该文提出的算法的主要思想就是将混沌变量映射到K均值算法的变量中,用混沌变量代替其寻找全局最优值。分割试验结果表明:该文提出的算法,不仅在分割准确性上优于当下流行的K均值算法和模糊C均值算法,而且在运行时间上也更胜一筹,K均值算法和模糊C均值算法分割一幅马铃薯芽眼的图像所需的平均时间分别为2.895 5 s和3.556 4 s,而该文提出的算法仅需1.109 s。当聚类数大于3时,该文提出的算法在运行时间上受聚类数目的影响非常小,这一特点可用于其他一些适合聚类数大于3的农作物上。试验结果还表明,对于该文中的样本,最佳聚类数不宜超过3。最后,精度试验验证了该文提出的算法能够对样本中的马铃薯芽眼实现完全,无遗漏的分割,总的分割精度为98.87%,其中,对正常的马铃薯芽眼分割精度可达100%,对特殊马铃薯的芽眼分割精度为91.67%,总体分割精度较好。因此,该文提出的算法能够为后续种薯的自动切块提供参考。  相似文献   

15.
基于语义分割的作物垄间导航路径识别   总被引:1,自引:3,他引:1  
针对目前农作物垄间导航路径识别目前存在准确性、实时性差、通用性弱及深度学习模型解释困难等问题,该研究在Unet模型的基础上进行剪枝与优化,提出了保留Unet模型特征跳跃连接优势的Fast-Unet模型,并以模型所识别的导航路径为基础,通过最小二乘法回归生成垄间导航线与偏航角。该研究首先在棉花垄间导航路径数据集上进行模型训练,随后将训练的模型迁移至玉米、甘蔗等小样本数据集进行导航路径识别,通过使用梯度加权类激活映射法对模型识别过程与迁移学习过程进行解释,对各模型识别结果进行可视化对比。Fast-Unet模型对棉花、玉米、甘蔗导航路径提取精度指标平均交并比分别为0.791、0.881和0.940。模型推理速度为Unet的6.48倍,在单核CPU上处理RGB图像的推理速度为64.67帧/s,满足农作物导航路径识别的实时性需求。研究结果可为田间智能农业装备的导航设备研制提供技术与理论基础。  相似文献   

16.
从复杂背景中识别成熟荔枝串中的荔枝果及结果母枝,获取结果母枝上的采摘点是机器人视觉定位与识别的难点,荔枝果、结果母枝与叶子各部位图像颜色特征分析与识别成为研究重点。首先针对荔枝果与结果母枝的特点、光照与环境的特殊性及不确定性,提出了探索性分析与荔枝图像识别的融合方法,对荔枝果与结果母枝进行了图像分类与统计的探索性分析,并给出了荔枝图像数据的探索性分析流程图;其次,根据荔枝不同部位颜色均值分布的特点,设计了荔枝果、结果母枝及叶子在6种色彩模型下的颜色均值分布箱线图,通过图形启示的数据分析与探索,给出了基于YCbCr色彩空间的Cr单通道图的荔枝各部位分类识别的视觉模型,分析表明Cr分量值在0.5~0.54能去除叶子和侧枝等复杂背景,实现荔枝串中的荔枝果与结果母枝的分割。最后,以60组不同光照条件的180幅自然环境下采集的荔枝图像为试验测试对象,用颜色特征的视觉模型结合阈值分割方法有效地识别了成熟荔枝串与荔枝果,荔枝串与荔枝果的平均识别率分别为91.67%和95.00%。用探索性分析与图像运算相结合的方法成功地提取了结果母枝(识别率为86.67%),并用计算出的采摘点进行视觉定位的仿真。试验和仿真结果表明视觉模型及其方法能对荔枝不同部位进行有效识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号