首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxycinnamic acid content and ferulic acid dehydrodimer content were determined in 11 barley varieties after alkaline hydrolysis. Ferulic acid (FA) was the most abundant hydroxycinnamate with concentrations ranging from 359 to 624 microg/g dry weight. p-Coumaric acid (PCA) levels ranged from 79 to 260 microg/g dry weight, and caffeic acid was present at concentrations of <19 microg/g dry weight. Among the ferulic acid dehydrodimers that were identified, 8-O-4'-diFA was the most abundant (73-118 microg/g dry weight), followed by 5,5'-diFA (26-47 microg/g dry weight), the 8,5'-diFA benzofuran form (22-45 microg/g dry weight), and the 8,5'-diFA open form (10-23 microg/g dry weight). Significant variations (p < 0.05) among the different barley varieties were observed for all the compounds that were quantified. Barley grains were mechanically fractionated into three fractions: F1, fraction consisting mainly of the husk and outer layers; F2, intermediate fraction; and F3, fraction consisting mainly of the endosperm. Fraction F1 contained the highest concentration for ferulic acid (from 77.7 to 82.3% of the total amount in barley grain), p-coumaric acid (from 78.0 to 86.3%), and ferulic acid dehydrodimers (from 79.2 to 86.8%). Lower contents were found in fraction F2, whereas fraction F3 exhibited the lowest percentages (from 1.2 to 1.9% for ferulic acid, from 0.9 to 1.7% for p-coumaric acid, and <0.02% for ferulic acid dehydrodimers). The solid barley residue from the brewing process (brewer's spent grain) was approximately 5-fold richer in ferulic acid, p-coumaric acid, and ferulic acid dehydrodimers than barley grains.  相似文献   

2.
The contents of free and total phenolic acids and alk(en)ylresorcinols were analyzed in commercial products of eight grains: oat (Avena sativa), wheat (Triticum spp.), rye (Secale cerale), barley (Hordeum vulgare), buckwheat (Fagopyrum esculentum), millet (Panicum miliaceum), rice (Oryza sativa), and corn (Zea mays). Avenanthramides were determined in three oat products. Free phenolic acids, alk(en)ylresorcinols, and avenanthramides were extracted with methanolic acetic acid, 100% methanol, and 80% methanol, respectively, and quantified by HPLC. The contents of total phenolic acids were quantified by HPLC analysis after alkaline and acid hydrolyses. The highest contents of total phenolic acids were in brans of wheat (4527 mg/kg) and rye (4190 mg/kg) and in whole-grain flours of these grains (1342 and 1366 mg/kg, respectively). In other products, the contents varied from 111 mg/kg (white wheat bread) to 765 mg/kg (whole-grain rye bread). Common phenolic acids found in the grain products were ferulic acid (most abundant), ferulic acid dehydrodimers, sinapic acid, and p-coumaric acid. The grain products were found to contain either none or only low amounts of free phenolic acids. The content of avenanthramides in oat flakes (26-27 mg/kg) was about double that found in oat bran (13 mg/kg). The highest contents of alk(en)ylresorcinols were observed in brans of rye (4108 mg/kg) and wheat (3225 mg/kg). In addition, whole-grain rye products (rye bread, rye flour, and whole-wheat flour) contained considerable levels of alk(en)ylresorcinols (524, 927, and 759 mg/kg, respectively).  相似文献   

3.
Extracts of aromatic plants of Greek origin were examined as potential sources of phenolic compounds. RP-HPLC with UV detection was employed for the identification and quantification of the phenolic antioxidants, present in methanolic extracts. The most abundant phenolic acids were ferulic acid (1.1-280 mg/100 g of dry sample) and caffeic acid (1.2-60 mg/100 g of dry sample). (+)-Catechin and quercetin were the most abundant flavonoids. Apigenin and luteolin were detected in high amounts in Menta pulegium and Thymus vulgaris, respectively. The antioxidant capacity was determined, in dried ground plants and in their methanol extracts, with the Rancimat test using sunflower oil as substrate. Both pulverized plants and extracts showed antioxidant capacity. Total phenolic content in the extracts was determined spectrometrically according to the Folin-Ciocalteu assay and ranged from 1 to 21 mg of gallic acid/100 g of dry sample. Antimicrobial activity of the extracts against selected microbes was also conducted in this study.  相似文献   

4.
Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was significantly correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects.  相似文献   

5.
Fresh and sun-dried dates of three native varieties from Oman, namely, Fard, Khasab, and Khalas, were examined for their antioxidant activity and total contents of anthocyanins, carotenoids, and phenolics, as well as free and bound phenolic acids. All results are expressed as mean value +/- standard deviation (n = 3) on a fresh weight basis. Fresh date varieties were found to be a good source of antioxidants (11687-20604 micromol of Trolox equiv/g), total contents of anthocyanins (0.24-1.52 mg of cyanidin 3-glucoside equiv/100 g), carotenoids (1.31-3.03 mg/100 g), phenolics (134-280 mg of ferulic acid equiv/100 g), free phenolic acids (2.61-12.27 mg/100 g), and bound phenolic acids (6.84-30.25 mg/100 g). A significant (p < 0.05) amount of antioxidants and carotenoids was lost after sun-drying of dates, whereas the total content of phenolics and free and bound phenolic acids increased significantly (p < 0.05). Anthocyanins were detected only in fresh dates. Date varieties had different levels and patterns of phenolic acids. Four free phenolic acids (protocatechuic acid, vanillic acid, syringic acid, and ferulic acid) and nine bound phenolic acids (gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, and o-coumaric acid) were tentatively identified. Of the date varieties studied, Khalas, which is considered to be premium quality, had higher antioxidant activity, total carotenoids, and bound phenolic acids than other varieties. These results suggest that all date varieties serve as a good source of natural antioxidants and could potentially be considered as a functional food or functional food ingredient, although some of their antioxidant constituents are lost during sun-drying.  相似文献   

6.
Tef, Eragrostis tef (Zucc.) Trotter, is a cereal crop originated and diversified in Ethiopia, where it is used to produce a range of food products. This study aimed to profile and quantify the phenolic composition and antioxidant potential of seven tef grain varieties. Soluble and bound phenolics ranged from 37 to 71 and from 226 to 376 mg of gallic acid equivalent/100 g dry basis (db), and soluble and bound flavonoid contents varied between 36 and 64 and between 113 and 258 mg of catechin equivalent/100 g db, respectively. Protocatechuic, vanillic, syringic, p‐coumaric, sinapic, ferulic, and rosmarinic acids, catechin, and naringenin were detected at least in three of the varieties studied. The dominant phenolic compounds were catechin, rosmarinic acid, and ferulic acid in the soluble extracts, whereas ferulic, rosmarinic, and p‐coumaric acids were the dominant ones in the bound extract. Gallic, caffeic, and salicylic acids were not detected in any of the varieties studied. The majority (>84%) of tef grain phenolics were found in bound form, contributing >84% of total 2,2‐diphenyl‐1‐picrylhydrazyl antioxidative capacity and >80% of total ferric reducing antioxidant power. These results clearly demonstrated the differences in phenolic profile among tef grain varieties. These results are relevant for developing healthy and nutritious tef‐based food products.  相似文献   

7.
Phenolic acids profile and antioxidant activity of six diverse varieties of spelt are reported. Antioxidant activity was assessed using eight methods based on different mechanism of action. Phenolic acids composition of spelt differed significantly between varieties and ranged from 506.6 to 1257.4 μg/g DW. Ferulic and sinapinic acids were the predominant phenolic acids found in spelt. Total ferulic acid content ranged from 144.2 to 691.5 μg/g DW. All analyzed spelt varieties possessed high antioxidant potential. In spite of the fact that bound phenolic acids possessed higher antioxidant activities, analysis of antioxidant potential and their relationship with phenolic acid content showed that free phenolics were more effective. Eight antioxidant methods were integrated to obtain a total antioxidant capacity index that may be used for comparison of total antioxidant capacity of spelt varieties. Total antioxidant potential of spelt cultivars were ordered as follows: Ceralio > Spelt INZ ≈ Ostro > Oberkulmer Rotkorn > Schwabenspelz > Schwabenkorn.  相似文献   

8.
Different barley varieties, consisting of hulled and hull-less types, of normal, waxy, and high amylose starch, as well as two-rowed and six-rowed types, were analyzed for their main proanthocyanidins and bound phenolic acids. Variations in proanthocyanidin and phenolic acid contents were studied in different barley types as well as inter-relationships between the phytochemicals and polysaccharides. The main flavanols found in the analyzed barley varieties were two dimeric as well as four trimeric forms in addition to catechin. The total amount of flavanols ranged from 325 to 527 microg/g of fresh weight of barley flour. No evident associations were found between variations in proanthocyanidin levels and different barley types. The total amount of phenolic acids ranged from 604 to 1346 microg/g of fresh weight of barley flour, with ferulic acid as the dominating acid. The amount of phenolic acids varied according to occurrence or lack of hull, with significantly higher levels in the hulled varieties.  相似文献   

9.
Rye products typically induce low insulin responses and appear to facilitate glucose regulation. The objective of this study was to investigate differences in postprandial glucose, insulin, and satiety responses between breads made from five rye varieties. Breads made from whole grain rye (Amilo, Rekrut, Dankowski Zlote, Nikita, and Haute Loire Pop) or a white wheat bread (WWB) were tested in a randomized cross-over design in 14 healthy subjects (50 g available starch). Metabolic responses were also related to the composition of dietary fiber and bioactive compounds in the breads and to the rate of in vitro starch hydrolysis. The Amilo and Rekrut rye breads induced significantly lower insulin indices (II) than WWB. Low early postprandial glucose and insulin responses (tAUC 0-60 min) were related to higher amounts of caffeic, ferulic, sinapic, and vanillic acids in the rye breads, indicating that the phenolic acids in rye may influence glycemic regulation. All rye breads induced significantly higher subjective feelings of fullness compared to WWB. A low II was related to a higher feeling of fullness and a lower desire to eat in the late postprandial phase (180 min). The data indicate that some rye varieties may be more insulin-saving than others, possibly due to differences in dietary fiber, rate of starch hydrolysis, and bioactive components such as phenolic acids.  相似文献   

10.
Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.  相似文献   

11.
Extracts from leaf sheaths of farmers' varieties of dye sorghum cultivated and used in Benin as a source of biocolorings were analyzed for their anthocyanidin and phenolic contents, as well as their antioxidant capacity. The aim was to identify and quantify the types of anthocyanin and phenolic acids. The total anthocyanin content of the leaf sheaths ranged from 13.7 to 35.5 mg of cyanidin 3-glucoside equivalent/g of dry matter (DM), with an average of 27.0 mg/g. The total anthocyanin content is 90 times higher than levels usually reported in fruits and vegetables. Anthocyanin consisted essentially of apigeninidin and luteolinidin, two 3-deoxyanthocyanidins with many applications in food, beverage, and pharmaceutical industries. The apigeninidin content of the leaf sheaths was 30 times higher than that in cereal bran and ranged from 14.7 to 45.8 mg/g, with an average of 31.3 mg/g. The amount of luteolinidin ranged from 0.4 to 2.4 mg/g, with a mean of 1.2 mg/g. The total phenolic content expressed as gallic acid equivalent averaged 95.5 mg/g. The free phenolic acids identified were benzoic acid, p-coumaric acid, and o-coumaric acid at amounts of 801.4, 681.6, and 67.9 μg/g, respectively. The leaf sheaths of dye sorghum have an antioxidant capacity [3.8-5.6 mmol of Trolox equivalent (TE)/g of DM] much higher than that reported for cereal bran and fruits and vegetables.  相似文献   

12.
Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals.  相似文献   

13.
Seventeen varieties of cowpeas grown in Arkansas were analyzed for their phenolic constituents using high-performance liquid chromatography (HPLC). Protocatechuic acid was identified as the major phenolic acid present in esterified forms. The amount of protocatechuic acid increased from trace-3.6 to 9.3-92.7 mg/100 g of flour in the 17 varieties of cowpeas after hydrolysis. Six other phenolic acids, including, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid, ferulic acid, 2,4-dimethoxybenzoic acid, and cinnamic acid, were also identified. These phenolic acids were evenly distributed mainly in free acid forms at <7 mg/100 g of flour. Total phenolic contents determined using Folin-Ciocalteu's reagent were largely different among the 17 varieties, ranging from 34.6 to 376.6 mg/100 g of flour. A comparison of the HPLC chromatograms of the 17 cowpea phenolics before and after alkali hydrolysis indicated the conversion of a pattern with evenly distributed peaks to one with a single major peak for protocatechuic acid, suggesting that the chromatograms before hydrolysis better represent the identities of the cowpea varieties.  相似文献   

14.
A GC-MS method is reported for separation and characterization of widely different amounts of benzoic and phenolic acids as their trimethylsilyl derivatives simultaneously in cranberry. Fifteen benzoic and phenolic acids (benzoic, o-hydroxybenzoic, cinnamic, m-hydroxybenzoic, p-hydroxybenzoic, p-hydroxyphenyl acetic, phthalic, 2,3-dihydroxybenzoic, vanillic, o-hydroxycinnamic, 2,4-dihydroxybenzoic, p-coumaric, ferulic, caffeic, and sinapic acid) were identified in cranberry fruit in their free and bound forms on the basis of GC retention times and simultaneously recorded mass spectra. Except for benzoic, p-coumaric, caffeic, ferulic, and sinapic acids, 10 other phenolic acids identified have not been reported in cranberry before. The quantitation of the identified components was based on total ion current (TIC). The experimental results indicated cranberry fruit contains a high content of benzoic and phenolic acids (5.7 g/kg fresh weight) with benzoic acid being the most abundant (4.7 g/kg fresh weight). The next most abundant are p-coumaric (0.25 g/kg fresh weight) and sinapic (0.21 g/kg fresh weight) acid. Benzoic and phenolic acids occur mainly in bound forms and only about 10% occurs as free acid.  相似文献   

15.
Phenolic acids from 30 barley varieties (combination of hulled/hulless/two-row/six-row/regular/waxy) were investigated by HPLC following four different sample treatments: (a) simple hot water extraction, (b) extraction after acid hydrolysis, (c) acid plus alpha-amylase hydrolysis, and (d) acid plus alpha-amylase plus cellulase hydrolysis treatments. The benzoic acid (p-hydroxybenzoic, vanillic, and protocatechuic acids) and cinnamic acid derivatives (coumaric, caffeic, ferulic, and chlorogenic acids) were identified, and some of the phenolic acids were quantified after each above-mentioned treatment. The data indicated that a combination of sequential acid, alpha-amylase, and cellulase hydrolysis treatments might be applicable for release of more phenolic acids from barley.  相似文献   

16.
To release bound phenolic acids, a microwave-assisted extraction procedure was applied to bran and flour fractions obtained from eight sorghum and eight maize cultivars varying in hardness. The procedure was followed by HPLC analysis, and the identities of phenolic acids were confirmed by MS/MS spectra. The extraction of sorghum and maize bound phenolic acids was done for 90 s in 2 M NaOH to release ferulic acid and p-coumaric acid from bran and flour. Two diferulic acids, 8-O-4'- and 8-5'-benzofuran form, were identified and quantitated in sorghum bran, and only the former was found in maize bran. The contents of ferulic acid and diferulic acids in sorghum bran were 416-827 and 25-179 μg/g, respectively, compared to 2193-4779 and 271-819 μg/g in maize. Phenolic acid levels of sorghum were similar between hard and soft cultivars, whereas those of maize differed significantly (p < 0.05) except for ferulic acid in flour. Sorghum phenolic acids were not correlated with grain hardness as measured using a tangential abrasive decortication device. Maize ferulic acid (r = -0.601, p < 0.01), p-coumaric acid (r = -0.668, p < 0.01), and 8-O-4'-diferulic acid (r = -0.629, p < 0.01) were significantly correlated with hardness.  相似文献   

17.
The extracts of saponified cereal fibers of whole grains of corn (Zea mays cv. microsperma KOERN.), wheat (Triticum aestivum L.), spelt (Triticum spelta L.), and rice (Oryza sativa L.) were investigated for dehydrodimers of ferulic acid using gas-liquid chromatography (GLC) with mass spectrometric detection (GLC-MS) and flame ionization detection (GLC-FID). In addition to the 8,5'-, 8, 8'-, 5,5'-, and 8-O-4'-coupled diferulic acids previously identified from other plant materials the 4-O-5'-coupled diferulic acid (E)-3-[4-[(E)-2-carboxyvinyl]-2-methoxyphenoxy]-4-hydroxy-5-methoxyci nnamic acid (4-O-5'-DFA) was identified in all fibers investigated. This new diferulate was authenticated by comparison of its mass spectrum and its relative GLC retention time with those of the synthesized compound. Semiquantitative determination of 4-O-5'-DFA showed that it is present at 8-30 microg/g, approximately 70-100 times lower concentrations than the sum of 8,5'-coupled diferulic acids, the major diferulic acids in the investigated fibers.  相似文献   

18.
Human bioavailability of curcumin from breads enriched with 1 g/portion of free curcumin (FCB), encapsulated curcumin (ECB), or encapsulated curcumin plus other polyphenols (ECBB) was evaluated. Parental and metabolized curcuminoids and phenolic acids were quantified by HPLC/MS/MS in blood, urine, and feces collected over 24 h. The concentrations of serum curcuminoids were always below 4 nmol/L and those of glucuronides 10-fold less. Encapsulation delayed and increased curcuminoid absorption as compared to the free ingredient. Serum and urinary concentrations of ferulic and vanillic acid were between 2- and 1000-fold higher than those of curcuminoids, with ECBB eliciting the highest amounts. Fecal curcuminoids were 6-fold more abundant after ECB than FCB, while phenolic acids after ECBB quadruplicated those after ECB. Curcuminoid encapsulation increased their bioavailability from enriched bread, probably preventing their biotransformation, with combined compounds slightly reducing this effect. Phenolic acids are the major metabolites of curcuminoids and may contribute to their biological properties.  相似文献   

19.
The consumption of fruits, vegetables, and whole grains rich in antioxidative phytochemicals is associated with a reduced risk of chronic diseases such as cancer, coronary heart disease, diabetes, Alzheimer's disease, cataract, and aged-related functional decline. For example, phenolic acids are among the main antioxidative phytochemicals in grains that have been shown to be beneficial to human health. Corn (Zea mays L.) is a major staple food in several parts of the world; thus, the antioxidant activity of several corn types was evaluated. The 2,2-Diphenyl-1-picryhydrazyl free radical (DPPH*) scavenging activity, total phenolic content (TPC), antioxidant capacity of lipid-soluble substances (ACL), oxygen radical absorbance capacity (ORAC), and phenolic acid compositions of typical and mutant genotypes (typical-1, waxy, typical-2, and high-amylose) were investigated. The DPPH* scavenging activity at 60 min was 34.39-44.51% in methanol extracts and 60.41-67.26% in HCl/methanol (1/99, v/v) extracts of corn. The DPPH* scavenging activity of alkaline hydrolysates of corn ranged from 48.63 to 64.85%. The TPC ranged from 0.67 to 1.02 g and from 0.91 to 2.15 g of ferulic acid equiv/kg of corn in methanol and HCl/methanol extracts, respectively. The TPC of alkaline hydrolysates ranged from 2.74 to 6.27 g of ferulic acid equiv/kg of corn. The ACL values were 0.41-0.80 and 0.84-1.59 g of Trolox equiv/kg of corn in methanol and HCl/methanol extracts, respectively. The ORAC values were 10.57-12.47 and 18.76-24.92 g of Trolox equiv/kg of corn in methanol and HCl/methanol extracts, respectively. ORAC values of alkaline hydrolysates ranged from 42.85 to 68.31 g of Trolox equiv/kg of corn. The composition of phenolic acids in alkaline hydrolysates of corn was p-hydroxybenzoic acid (5.08-10.6 mg/kg), vanillic acid (3.25-14.71 mg/kg), caffeic acid (2.32-25.73 mg/kg), syringic acid (12.37-24.48 mg/kg), p-coumaric acid (97.87-211.03 mg/kg), ferulic acid (1552.48-2969.10 mg/kg), and o-coumaric acid (126.53-575.87 mg/kg). Levels of DPPH* scavenging activity, TPC, ACL, and ORAC in HCl/methanol extracts were obviously higher than those present in methanol extracts. There was no significant loss of antioxidant capacity when corn was dried at relatively high temperatures (65 and 93 degrees C) postharvest as compared to drying at ambient temperatures (27 degrees C). Alkaline hydrolysates showed very high TPC, ACL, and ORAC values when compared to methanol and HCl/methanol extracts. High-amylose corn had a better antioxidant capacity than did typical (nonmutant) corn genotypes.  相似文献   

20.
A high-performance liquid chromatographic (HPLC) method with diode-array detection (DAD) was used to identify and quantify free and total phenolic acids (m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, gallic acid, vanillic acid, syringic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, chlorogenic acid, and ellagic acid) in plant foods. Free phenolic acids were extracted with a mixture of methanol and 10% acetic acid. Bound phenolic acids were liberated using first alkaline and then acid hydrolysis followed by extraction with diethyl ether/ethyl acetate (1:1). All fractions were quantified separately by HPLC. After HPLC quantification, results of alkali and acid hydrolysates were calculated to represent total phenolic acids. Ellagic acid was quantified separately after long (20 h) acid hydrolysis. The methods developed were effective for the determination of phenolic acids in plant foods. DAD response was linear for all phenolic acids within the ranges evaluated, with correlation coefficients exceeding 0.999. Coefficients of variation for 4-8 sample replicates were consistently below 10%. Recovery tests of phenolic acids were performed for every hydrolysis condition using several samples. Recoveries were generally good (mean >90%) with the exceptions of gallic acid and, in some cases, caffeic acid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号