首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arbuscular mycorrhizal fungus (AMF) can enhance plant growth and resistance to toxicity produced by heavy metals (HMs), affect the bioavailability of HMs in soil and the uptake of HMs by plants, and thus has been emerged as the most prominent symbiotic fungus for contribution to phytoremediation. A greenhouse pot experiment was conducted to assess the effect of Glomus versiforme BGC GD01C (Gv) on the growth and Cd accumulation of Cd-hyperaccumulator Solanum nigrum in different Cd-added soils (0, 25, 50, 100 mg Cd kg−1 soil). Mycorrhizal colonization rates were generally high (from 71% to 82%) in Gv-inoculated treatments at all Cd levels. Gv colonization enhanced soil acid phosphatase activity, and hence elevated P acquisition and growth of S. nigrum at all Cd levels. Moreover, the presence of Gv significantly increased DTPA-extractable (phytoavailable) Cd concentrations in 25 and 50 mg Cd kg−1 soils, but did not affect phytoavailable Cd in 100 mg Cd kg−1 soil. Similarly, inoculation with Gv significantly increased Cd concentrations of S. nigrum in 25 and 50 mg Cd kg−1 soils, but decreased Cd concentrations of the plants in 100 mg Cd kg−1 soil. Overall, inoculation with Gv greatly improved the total Cd uptakes in all plant tissues at all Cd levels. The present results indicated that S. nigrum associated with Gv effectively improved the Cd uptake by plant and would be a new strategy in microbe-assisted phytoremediation for Cd-contaminated soils.  相似文献   

2.
Soil contamination with Cd is of primary concern and beneficial soil restoration strategies urge. The aim of this work is to evaluate the response of two different genotypes of Pinus pinaster (wild and selected) to Cd contamination and to assess how inoculation with ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus, influenced each genotype. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg−1. Plant growth, mycorrhizal traits and Cd accumulation in different tissues of the plant were determined at harvest. The fungal community was assessed by denaturing gradient gel electrophoresis. At 15 mg Cd kg−1 S. bovinus increased aboveground development in both genotypes. At 30 mg Cd kg−1 non-inoculated wild genotype accumulated more Cd in the shoots (1.7-fold) than the selected genotype; inoculation with R. roseolus decreased Cd concentration in the roots of the selected genotype whereas the opposite occurred in the wild genotype. Cd concentration in the root system was the parameter most influenced by the interaction between the three studied variables. The fungal community established was affected by the Cd concentration in the soil. Results show that different genotypes of P. pinaster react differently to Cd exposure depending on the mycorrhizal association. The importance of considering the combination between plant genotype and its symbiotic partners when aiming at the forestation of degraded land is highlighted.  相似文献   

3.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates.  相似文献   

4.
In order to study the variations in spore abundance and root colonization parameters of arbuscular mycorrhizal (AM) fungi in a naturally heavy metals polluted site and their relationships with soil properties, 35 plots in the Anguran Zn and Pb mining region were selected along a transect from the mine to 4500 m away. Within each plot, a composite sample of root and rhizospheric soil from a dominant indigenous plant was collected. The soil samples were analyzed for their physico-chemical characteristics. Spores were extracted, counted and identified at genus level. The roots were examined for colonization, arbuscular abundance, mycorrhizal frequency and intensity. Along the transect, the total and available (DTPA-extractable) concentration of Zn decreased from 6472 to 45 mg kg−1 and 75 to 5 mg kg−1, respectively. For Pb the values varied from 5203 to 0 mg kg−1 and 32 to 0 mg kg−1, respectively. In parallel, root colonization rate in the dominant native plants (except Alyssum sp.) varied from 35% to 85% and the spore numbers from 80 to 1306 per 200 g dry soil along the transect. Spores of Glomus were abundantly found in all plots as dominant, while Acaulospora spores were observed only in some moderately polluted and in control plots. AM fungal propagules never disappeared completely even in soils with the highest rates of both heavy metals. Spore numbers were more affected by Zn and Pb concentrations than root colonization. The variations of AM fungi propagules were better related to available than to total concentration of both metals. Spore numbers were positively correlated with mycorrhizal colonization parameters, particularly with arbuscular abundance.  相似文献   

5.
《Applied soil ecology》2007,35(1):163-173
Two pot experiments were conducted to investigate the effect of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus intraradices on Pb uptake by two clones of Nicotiana tabacum plants. Non-transgenic tobacco plants, variety Wisconsin 38, were compared in terms of Pb uptake with transgenic plants of the same variety with inserted gene coding for polyhistidine anchor in fusion with yeast metallothionein. Bioavailability of Pb in experimentally contaminated soil was enhanced by the application of a biodegradable chelate ethylenediaminedissuccinate (EDDS).EDDS addition (2.5 and 5.0 mmol kg−1 substrate) increased Pb uptake from the substrate and enhanced Pb translocation from the roots to the shoots, with shoot Pb concentrations reaching up to 800 mg kg−1 at the higher chelate dose. Application of a single dose of 5 mmol kg−1 proved to be more efficient at increasing shoot Pb concentrations than two successive doses of 2.5 mmol kg−1, in spite of a marked negative effect on plant growth and phytotoxicity symptoms. Pb amendment (1.4 g kg−1 substrate) connected with either dose of EDDS decreased significantly plant biomass as well as reduced the development of AM fungi. AM inoculation promoted the growth of tobacco plants and partly alleviated the negative effect of Pb contamination, mainly in the case of root biomass.No consistent difference in Pb uptake was found between transgenic and non-transgenic tobacco plants. The effect of AM inoculation on Pb concentrations in plant biomass varied between experiments, with no effect observed in the first experiment and significantly higher root Pb concentrations and increased root–shoot ratio of Pb concentrations in the biomass of inoculated plants in the second experiment. Due to probable retention of Pb in fungal mycelium, the potential of AM for phytoremediation resides rather in Pb stabilisation than in phytoextraction.  相似文献   

6.
Studies were conducted to evaluate the survival and persistence of Sinorhizobium meliloti 104A14 and two acid phosphatase-negative mutants in Kirkland (fine, mixed, thermic Udertic Paleustolls) silt loam soils with various fertility levels, and to assess the impact of inoculation on nodule occupancy and soil microbial community structure in the inoculated alfalfa (Medicago sativa L.) rhizosphere. Recovery of the inoculated strains was 100% (in the order of 108 cells g−1 soil) immediately following inoculation to soils, but decreased from 108 cells g−1 soil to undetectable levels in a nutrient-poor soil within 32 days. In a nutrient-rich soil, approximately 2–3% (4.7–7.43×106 cells g−1 soil) of the mutants and 23% (5.84×107 cells g−1 soil) of the wild-type inocula persisted for more than 64 days. Survivability and persistence of the wild-type S. meliloti were significantly greater than that of the genetically modified acid phosphatase negative mutants in all the soils tested. The persistence and nodule occupancy of the introduced S. meliloti in sterile and non-sterile soils were also tested for two repeated alfalfa growth periods in the same plant growth units, with a 1 month interval in between and no additional inoculation for the second period. Nodule occupancy of the introduced S. meliloti in non-sterile soils ranged from 30 to 60% for the first period and 85 to 100% for the second period. Our results suggest that survival and persistence of S. meliloti was enhanced by alfalfa cultivation and increased soil fertility, but impaired by mutation of acid phosphatase genes regardless of phosphorus nutritional levels. Moreover, inoculation with genetically modified S. meliloti strain 104A14 promoted indigenous bacterial growth in soil (increased bacterial population from 1.4×106 to 4.3×106 cells g−1 soil), but not the growth of fungi and yeast. However, inoculation of the wild-type S. meliloti or genetically modified mutants did not result in significant changes in microbial community structure as indicated by EP indices and ratios of r/K strategists.  相似文献   

7.
《Applied soil ecology》2006,31(1-2):43-52
A greenhouse pot experiment was conducted for investigating the capability of a grass (annual ryegrass), a legume (summer vetch), and a crucifer (white mustard) to grow in a soil with portions from a former coal gasification site, influence the soil bacterial community, and promote the biodegradation of petrol hydrocarbons (PHCs). Soil concentrations of 1517 mg kg−1 of total petrol hydrocarbons (TPHs), including 71.4 mg kg−1 of total US EPA priority polycyclic aromatic hydrocarbons (TPAHs) have caused a significant (P < 0.05) reduction in shoot and root dry matter yields by more than 50%. Culturable bacteria and actinomycetes in soil were as much as 18-fold more abundant and the species composition was largely altered because of PHC contaminants and depending on crop species and age. After 95 days, 68.7% of initial TPH amounts and 59% of the TPAHs had disappeared from unplanted soil. Mustard and vetch fostered the removal of PHCs from soil reaching final TPH concentrations that were 15.6% and 12% lower than in unplanted soil. Both crops elicited the greatest degradative root activities and sustained particularly great populations of rhizosphere bacteria that are known hydrocarbon degraders. None of the crops aided the reduction of TPAHs in soil.  相似文献   

8.
Glyphosate is a systemic non-selective herbicide, the most widely used in the world. Alongside with its use in agricultural and forestry systems, this herbicide is used in grasslands in late summer with the aim of promoting winter species with the consequent increase in stocking rate. However, its effects on non-target organisms, such as arbuscular mycorrhizal fungi (AMF), are unclear. Arbuscular mycorrhizal fungi (AMF) colonize the root of more than 80% of terrestrial plants, improving their growth and survival, and therefore playing a key role in ecosystem structure and function. The aim of this work was to investigate the possible pathways through which glyphosate application affects AMF spores viability and root colonization in grassland communities. Our hypothesis is that glyphosate application can damage AMF directly (through contact with spores and external hyphae) or indirectly through the changes it generates on host plants. The experiment had a factorial array with three factors: (1) plant species, at two levels (Paspalum dilatatum and Lotus tenuis), (2) doses of glyphosate, at three levels (0 l ha−1, 0.8 l ha−1 and 3 l ha −1), and (3) application site, at two levels: soil (direct pathway) and plant foliage (indirect pathway). Spore viability was reduced even under the lowest glyphosate rate, but only when it was applied on the soil. Total root colonization for both species was similarly decreased when glyphosate was applied to plant foliage or on soil, with no difference between 0.8 and 3 l ha−1. The number of arbuscules was 20% lower when glyphosate was applied on plant foliage, than when it was applied on the soil. Our findings illustrate that glyphosate application negatively affects AMF functionality in grasslands, due to different causes depending on the herbicide application site. While, under field conditions, the occurrence of direct and/or indirect pathways will depend on the plant cover at the time of glyphosate application, the consequences of this practice on the plant community structure will vary with the mycorrhizal dependence of the species composition regardless of the pathway involved.  相似文献   

9.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

10.
The interrelationships between plants and rhizosphere bacteria are strongly dependent on the quality and quantity of root exudates. The ability to colonize roots is crucial for pseudomonads to function as biological control agents of root- and soil-borne pathogenic microbes. The multiplication of rhizosphere bacteria is restricted in the presence of simple phenolic compounds, which are components of the resistance mechanisms of plants to pathogens. Caffeic acid is a phenolic compound, which is commonly found in wheat tissues. It is prone to oxidation into o-quinones, which are toxic to microorganisms. The aim of the present study was to determine whether the ability of microorganisms to resist caffeic acid and its oxidation products could play a role in the early colonization of wheat seedlings. Among the fluorescent pseudomonads that we have studied, strain PSR114 is one of the most efficient colonizers of wheat seedlings during the first 48 h after seed germination, and it is particularly resistant to products resulting from the spontaneous oxidation of caffeic acid. This strain was isolated from the rhizosphere of oilseed rape and identified as being closely related to Pseudomonas proteolytica through the analysis of 16S rRNA and rpoB gene sequences. At pH 7.0, this strain grew intensively in the presence of 1.50 mg mL−1 of caffeic acid. Its multiplication was partially reduced in the presence of oxidized caffeic acid at concentrations above 0.21 mg mL−1, and completely inhibited at concentrations above 0.38 mg mL−1. A Tn5 transposon mutant of PSR114 had lower level of resistance to the oxidation products of caffeic acid, as well as reduced capacity to colonize wheat seedlings when compared to the wild type strain. This work demonstrates that resistance to oxidation products of caffeic acid can be important for successful bacterial colonization of wheat seedlings.  相似文献   

11.
Root colonization by Bacillus amyloliquefaciens is directly related to bacterial growth, chemotaxis, biofilm formation, and the interaction with host plant root exudates. In this study, root exudates were collected from two tomato plant varieties that supported bacterial cell division and induced the B. amyloliquefaciens T-5 chemotactic response, even at the concentration of 10 μg ml−1. Root exudates also induced biofilm formation, but lower than control treatment. In addition, five organic acids were identified in the root exudates and subsequently evaluated. Malic acid, citric acid, succinic acid and fumaric acid significantly induced the chemotaxis response and swarming motility. Maximal chemotactic response and swarming motility were induced by malic acid, and all the organic acid did not have a significant effect on biofilm formation. Furthermore, these organic acids promoted the B. amyloliquefaciens T-5 recruitment under gnotobiotic conditions, increasing the rhizosphere bacterial population. This data suggested that tomato root colonization by B. amyloliquefaciens T-5 was influenced by organic acids secreted by roots. This study expands our understanding of B. amyloliquefaciens T-5 colonization on tomato roots under natural conditions and reflects the significance of B. amyloliquefaciens T-5 strain as biocontrol agent which will be useful for preparing formulations for the better control of plant wilt diseases.  相似文献   

12.
A growing body of evidence indicates that atmospheric nitrogen (N) deposition can alter the composition and function of arbuscular mycorrhizal fungi (AMF) associated with plant roots. We studied the community of AMF actively transcribing ribosomal genes in the forest floor of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) that have been exposed to experimental N deposition since 1994 (30 kg NO3-N ha−1 year−1). Our objective was to evaluate whether previously observed declines in AM root infection and mycelial production resulted in a compositional shift in the AM fungi actively providing resources to plant symbionts under chronic N deposition. To accomplish this task, we cloned and sequenced the LSU of reverse-transcribed AM fungal rRNA extracted from the forest floor under ambient and experimental N deposition treatments. We found that experimental N deposition did not alter the active community of AMF or AMF diversity, but we did observe a significant decrease in rare taxa under chronic N deposition. Our results indicate that chronic N deposition, at levels expected by the end of this century, can exert a moderate influence on the composition and abundance of AMF associated with plant roots in a wide-spread forest ecosystem in the northeastern North America.  相似文献   

13.
This study focuses on the characterization of four bacterial isolates from heavy metal-polluted rhizosphere in order to examine their plant growth promoting (PGP) activity. The PGP activity on the canola (Brassica napus) of the strains which showed cadmium resistance and multiple PGP traits was assessed in the presence and in the absence of Cd2+. The strains, Pseudomonas tolaasii ACC23, Pseudomonas fluorescens ACC9, Alcaligenes sp. ZN4 and Mycobacterium sp. ACC14 showed 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. They also synthesized ACCD enzyme in vitro when 0.4 mM Cd2+ was added to the growth medium. The presence of the metal, however, reduced the ACCD activity in Alcaligenes sp. ZN4 and Mycobacterium sp. ACC14, while it did not affect the ACCD activity of P. tolaasii ACC23 and P. fluorescens ACC9. ACC9 and ACC23 produced indole acetic acid (IAA) and siderophores, while ACC14 produced only IAA. IAA and siderophores were produced more actively under Cd-stress.Root elongation assays conducted on B. napus under gnotobiotic conditions demonstrated increases (from 34% up to 97%) in root elongation of inoculated canola seedlings compared to the control plants. Subsequently, the effect of inoculation with these strains on growth and uptake of Cd2+ in roots and shoots of canola was studied in pot experiments using Cd-free and Cd-treated (15 μg Cd2+ g?1 dw) soil. Inoculation with P. tolaasii ACC23, P. fluorescens ACC9 and Mycobacterium sp. ACC14 promoted the growth of plants at concentrations of 0 and 15 μg Cd2+ g?1 soil. The maximum growth was observed in the plants inoculated with P. tolaasii ACC23. The strains did not influence the specific accumulation of cadmium in the root and shoot systems, but all increased the plant biomass and consequently the total cadmium accumulation.The present observations showed that the bacterial strains used in this study protect the plants against the inhibitory effects of cadmium, probably due to the production of IAA, siderophores and ACCD activity.  相似文献   

14.
The ultimate goal of soil remediation is to restore soil health. Soil microbial parameters are considered to be effective indicators of soil health. The aim of this study was to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass carbon, soil basal respiration and enzyme activities. For this purpose, a pre-stratified rhizobox experiment was conducted with the Cd hyperaccumulator Sedum alfredii H. for phytoextraction Cd from an artificial contaminated soil (15.81 mg kg−1) under greenhouse conditions. The plant and soil samples were collected after growing the plant for three and six months with three replications. The results indicated that the ecotype of S. alfredii H. originating from an ancient silver mining site was a Cd-hyperaccumulator as it showed high tolerance to Cd stress, the shoot Cd concentration were as high as 922.6 mg kg−1 and 581.9 mg kg−1 at the two samplings, and it also showed high BF (58.4 and 36.8 after 3 and 6 months growth), and TF (5.8 and 5.1 after 3 and 6 months growth). The amounts of Cd accumulated in the shoots of S. alfredii reached to an average of 1206 μg plant−1 after 6 months growth. Basal respiration, invertase and acid phosphatase activities of the rhizosphere soil separated by the shaking method were significantly higher (P < 0.01) than that of the near-rhizosphere soil and the unplanted soil after 3 months growth, so were microbial biomass carbon, urease, invertase and acid phosphatase activities of the rhizosphere soil after 6 months growth. Acid phosphatase activity of the 0–2 mm sub-layer rhizosphere soil collected by the pre-stratified method after 3 months growth was significantly higher (P < 0.05) than that of other sub-layer rhizosphere soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the 0–2 mm sub-layer rhizosphere soil after 6 months growth. It was concluded that phytoextraction by S. alfredii could improve soil microbial properties, especially in rhizosphere, and this plant poses a great potential for the remediation of Cd contaminated soil.  相似文献   

15.
Wheat production (Triticum aestivum L.) has increased across the world during last century with the intensification of agriculture. Phosphorus (P) fertilization is a common practice to improve wheat growth in Argentina. We investigate whether indigenous arbuscular mycorrhizal colonization (AMC) of hard red spring wheat is controlled by shoot P content (SPc) or by available soil P in an agricultural soil from the southeastern Argentine Pampas. In the field, AMC was monitored four times during two growing seasons of a conventional wheat crop. Treatments were: without P supply, annual supply of 11 and 22 kg P ha−1 during the last 5 years, and 164 kg P ha−1 applied once 5 years before the experiment. In the glasshouse, AMC was assessed three times in wheat growing in pots filled with the soil from unfertilized plots; treatments were: P (0 and 20 mg P pot−1), and nitrogen (N) fertilization (0 and 150 mg N pot−1). A range of soil P between 6 and 60 mg P kg−1 was obtained and the AMC ranged from 1% to 67% of root length colonized under both field and glasshouse conditions. P supplied annually increased growth and SPc but decreased AMC. N fertilization did not affect growth or AMC. Variations in SPc did not account for AMC. Variability in AMC was best accounted for local current soil available P content (r2 = 0.59). A linear-plateau relationship between soil P and indigenous AMC was established in wheat plants growing under contrasting environmental and experimental (field and glasshouse) conditions. Indigenous AMC was depressed by available soil P in the range 0–27 mg P kg−1 (a decrease of 2.8% mg P−1 kg−1). Above 27 mg P kg soil−1, AMC was stabilized at about 10%. Grain yield increased with fertilization and the highest relative shoot dry matter in field was obtained at 15.5 mg P kg soil−1. The soil P range that ensures high wheat production without deterring indigenous AMC is discussed.  相似文献   

16.
The role of phosphorus (P) application and arbuscular mycorrhizal fungi (AMF) on growth, arsenic (As) and P accumulation in lettuce plants growing in an As-polluted soil (total As 250 mg kg−1), was investigated. In particular, it was tested whether application of a commercial inoculum (CI), with (+P at 90 kg P ha−1) and without (−P at 0 kg P ha−1) P fertilizer, supported greater plant growth and provided more P, enhancing As tolerance, than indigenous fungi alone. The influence of these treatments on As and P availability in the rhizosphere and bulk soils was also investigated. Greenhouse pot experiments were established where plants were grown with and without commercial inoculum (+CI, −CI) in unsterilized conditions. Inoculation with commercial inoculum and P application together considerably increased plant biomass, by enhancing host plant P nutrition and lowering shoot and root As concentrations compared to plants inoculated only with native AMF. In the rhizosphere of +CI+P plants there was P soil depletion compared to −CI+P. The results evidenced that, with P addition, inoculation with commercial inoculum alleviated the toxicity of excessive As by improving P nutrition without increasing As concentrations in the plant, emphasizing the role of beneficial microbes and P fertilizer to improve soil fertility in As-contaminated soil.  相似文献   

17.
《Applied soil ecology》2007,35(2-3):93-102
A semi-arid soil treated with different concentrations of formulated atrazine in a laboratory experiment was studied over 45 days, by different biological and molecular parameters (bacterial enumeration (cfu), community level physiological profiles (CLPPs) measured by Biolog® and denaturing gradient gel electrophoresis (DGGE)), to study the bacterial community diversity.Formulated atrazine was almost totally degraded at different concentrations after this incubation time. The number of colony forming units (cfu) for soils with 100 and 1000 mg kg−1 atrazine was significantly (p  0.05) higher than for the control, 1 and 10 mg kg−1 treatments. DGGE banding patterns showed that regardless of time elapsed, concentrations of 10, 100 and 1000 mg kg−1 atrazine in soil, affected the bacterial community compared to control and 1 mg kg−1.The Shannon diversity index (H′) based on CLPP data showed a significant (p  0.05) decrease at atrazine concentrations of 100 and 1000 mg kg−1. The Shannon diversity indices for different guilds of source carbon and the parameters K and r (based on the kinetics of colour formation rather than on the degree of colour development) were related to guilds of carbon substrates and atrazine concentration at a sampling time. The parameter K was very sensitive to atrazine effects on microbial communities.These biological and molecular parameters can be used to monitor changes in soils treated with atrazine at different concentrations, even when the pesticide is degraded.  相似文献   

18.
The incorporation of organic amendments from pruning waste into soil may help to mitigate soil degradation and to improve soil fertility in semiarid ecosystems. However, the effects of pruning wastes on the biomass, structure and activity of the soil microbial community are not fully known. In this study, we evaluate the response of the microbial community of a semiarid soil to fresh and composted vegetal wastes that were added as organic amendments at different doses (150 and 300 t ha−1) five years ago. The effects on the soil microbial community were evaluated through a suite of different chemical, microbiological and biochemical indicators, including enzyme activities, community-level physiological profiles (CLPPs) and phospholipid fatty acid analysis (PLFA). Our results evidenced a long-term legacy of the added materials in terms of soil microbial biomass and enzyme activity. For instance, cellulase activity reached 633 μg and 283 μg glucose g−1 h−1 in the soils amended with fresh and composted waste, respectively. Similarly, bacterial biomass reached 116 nmol g−1 in the soil treated with a high dose of fresh waste, while it reached just 66 nmol g−1 in the soil amended with a high dose of composted waste. Organic amendments produced a long-term increase in microbiological activity and a change in the structure of the microbial community, which was largely dependent on the stabilization level of the pruning waste but not on the applied dose. Ultimately, the addition of fresh pruning waste was more effective than the application of composted waste for improving the microbiological soil quality in semiarid soils.  相似文献   

19.
  【目的】  青枯病是由茄科雷尔氏菌 (Ralstonia solanacearum, 亦称青枯菌) 诱导产生的一种高温高湿型土传病害,土壤温度高、湿度大时易于青枯菌的繁殖进而引发青枯病。丛枝菌根真菌 (arbuscular mycorrhiza, AM) 可能通过调控根际微生物区系对病原体产生影响,我们研究了AM真菌对青枯菌入侵条件下土壤细菌群落的影响。  【方法】  以番茄 (Solanum lycopersicum) 为试材进行盆栽试验,供试AM真菌为摩西管柄囊霉 (Funneliformis mosseae) M47V,供试病原菌为茄科雷尔氏菌QL-RS 1115 (GenBank:GU390462)。催芽5日的番茄种子,接种AM菌剂的为菌根苗,未接种AM真菌的为非菌根苗。在番茄幼苗生长30天时,一半菌根苗和非菌根苗接种青枯菌,另一半不接种青枯菌,共4个处理。在接种青枯菌后1天和14天,采集番茄样品,采用抖土方法采集根际土壤,利用实时荧光PCR分析番茄根际青枯菌数量,采用16S rRNA高通量测序探究土壤细菌群落多样性和结构稳定性。  【结果】  在接种青枯菌初期 (1天),非菌根苗接种青枯菌 (TR–AMF) 和菌根苗接种青枯菌 (TR+AMF) 两组处理的根际土壤细菌群落结构发生明显改变,Chao1指数、Shannon指数和Simpson指数显著降低 (P<0.05),共现网络的节点数和连接数明显减少,模块化程度降低,共现网络简化表明细菌群落结构的稳定性降低。接种青枯菌14天后,不动杆菌属 (Acinetobacter)、鞘氨醇单胞菌属 (Sphingomonas)、溶杆菌属 (Lysobacter)、假单胞菌属 (Pseudomonas) 等有益细菌属在感染青枯菌的番茄根际富集,细菌共现网络的节点数和连接数增加,模块化程度提高,表明细菌群落稳定性得到恢复。与非菌根苗相比,菌根苗接种青枯菌 (TR+AMF) 和菌根苗未接种青枯菌 (TN+AMF) 两个处理番茄根际土壤中青枯菌丰度显著降低 (P<0.05)。AM真菌显著提高Chao1指数和Shannon指数 (P<0.05),提高了感染青枯菌番茄根际土壤中黄杆菌属(Flavobacterium)、黄色土源菌属 (Flavisolibacter)、噬胞菌属 (Cytophaga) 和苔藓杆菌属 (Bryobacter) 的相对丰度,同时增加了共现网络的节点数和连接数,并促进番茄根际细菌物种之间的良性互作,提高细菌网络的复杂程度。  【结论】  感染青枯菌的番茄根际会富集不动杆菌属 (Acinetobacter)、鞘氨醇单胞菌属 (Sphingomonas)、溶杆菌属 (Lysobacter)、假单胞菌属 (Pseudomonas) 等有益菌属以提高其抗病性,恢复细菌多样性和群落稳定性。接种AM真菌可显著降低番茄根际土壤中青枯菌的丰度,特别是侵染青枯菌后提高番茄根际的黄杆菌属 (Flavobacterium)、黄色土源菌属 (Flavisolibacter) 、噬胞菌属 (Cytophaga) 和苔藓杆菌属 (Bryobacter)的相对丰度,进而抑制土壤中青枯菌的生长,并通过提高细菌的多样性和丰富度,促进番茄根际细菌物种之间的稳定共生和良性互作,从而提高细菌群落对青枯菌的抵抗能力。  相似文献   

20.
Plant growth promoting rhizobacteria (PGPRs) are used for biocontrol of bacterial wilt caused by Ralstonia solanacearum. They are commonly isolated from the rhizosphere of healthy plants and are scarce in the rhizosphere of diseased plants. We hypothesized that a pathogen-prevalent environment, such as the rhizosphere of infected plants, would be a good or better source for isolating PGPRs than the rhizosphere of healthy plants. In order for these PGPRs to survive successfully in a pathogen-prevalent environment, they must have particularly well-developed survival strategies under the stresses exerted by pathogen activities, which would be of value for their use as biocontrol agents. To test this hypothesis, R. solanacearum-antagonistic bacteria were screened from the rhizospheres of diseased and healthy tomato plants. In total, 110 rhizobacteria were isolated, 18 of which showed antagonism to R. solanacearum in vitro. Among the 18 antagonistic strains, 11 (out of 60) were from the rhizosphere of diseased plants, with inhibition diameter zones ranging from 11.2 to 15.2 mm, whereas 7 (out of 50) were from the rhizosphere of healthy plants, with inhibition diameter zones ranging from 11.5 to 30.5 mm. Strains WR4, WR21, and WR42 from diseased plants rhizosphere, and HR61, HR62, and HR92 from healthy plants rhizosphere, were chosen to investigate their biocontrol efficacies (BCEs) in greenhouse condition. Results showed that WR-isolates performed better in reducing disease incidence (DI) than those HR-isolates. Population densities of R. solanacearum in the rhizosphere soil and crown section of tomato plants were lower in WR-isolate treatments than those in HR-isolate treatments. The best biocontrol effect was achieved by inoculating the strain WR21, followed by WR4, WR42, HR92, HR62, and HR61. Root colonization test showed WR21 had the highest root-colonizing capacity compared with 5 other antagonists. BCEs were positively (r = 0.747) correlated with root-colonizing capacities, but were negatively (r = −0.797) correlated with inhibition zones. In conclusion, the rhizosphere of diseased tomato plants is a good reservoir of biocontrol bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号