首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tropical areas, where crop production is limited by low soil quality, the development of techniques improving soil fertility without damage to the environment is a priority. In French Guiana, we used subsistence farmer plots on poor acidic soils to test the effect of different organic amendments, bitter manioc peel (M), sawdust (Sw) and charcoal (Ch), on soil nutrient content, earthworm abundance and yard-long bean (Vigna unguiculata sesquipedalis) production. The peregrine Pontoscolex corethrurus was the only earthworm species found. Pod production and plant growth were lowest in unamended soil. The application of a mixture of manioc peel and charcoal (M + Ch) improved legume production compared with other organic mixtures. It combined the favourable effects of manioc peel and charcoal. Manioc peel improved soil fertility through its low C:N ratio and its high P content, while charcoal decreased soil acidity and exchangeable Al and increased Ca and Mg availability, thus alleviating the possible toxic effects of Al on plant growth. The M + Ch treatment was favourable to P. corethrurus, the juvenile population of which reached a size comparable to that of the nearby uncultivated soil. The application of a mixture of manioc peel and charcoal, by improving crop production and soil fertility and enhancing earthworm activity, could be a potentially efficient organic manure for legume production in tropical areas where manioc is cultivated under slash-and-burn shifting agriculture.  相似文献   

2.
Pontoscolex corethurus (Müller, 1857) is the most common invasive earthworm in disturbed lands in the tropics. Conditions required for its successful colonization of new plots are still not understood since some areas can be invaded while others, sometimes in the vicinity, are not. We kept newly hatched P. corethrurus in a wide range of Amazonian soils where population densities had been previously evaluated. We identified soil conditions that best sustain survival, soil ingestion and growth of P. corethrurus in controlled laboratory conditions and checked if presence/absence in the field was consistent with laboratory observations. While pH and Ca influenced survival; Mg and C content were the greatest determinants for growth and C:P, Mg and clay contents determined soil ingestion rates. Soil ingestion and growth rate were correlated. There were no differences in earthworm soil ingestion rates between invaded and non-invaded soils. However, growth rate and survival were higher in soils from invaded sites than in soils from non invaded sites, indicating that soil quality may play a role in the invasion process. We identified two cases where P. corethrurus did not occur: (1) unfavourable soil texture and chemical properties, but also some areas with and (2) favourable soil texture and chemical properties but no invasion. Other parameters, like vegetation cover (grass or trees), soil structure and compaction, soil hydrologic processes or biotic resistance of native earthworm communities could potentially also be key elements for understanding why P. corethrurus populations occur in some sites and not in others.  相似文献   

3.
Land-use changes can drastically alter earthworm communities. Native species are often lost and few exotic species, such as Pontoscolex corethrurus, rapidly prevail when tropical forests are converted to pastures. However, this process can be reversed when forests recover from abandoned pastures through secondary succession. We hypothesized (1) that the formation of forest floor mass during secondary succession in pastures promotes the recovery of native, anecic earthworms and (2) that the shift from grass vegetation in pastures to woody plants in secondary forests decreases the abundance and biomass of the exotic, endogeic P. corethrurus. To test the first hypothesis, we developed a litter manipulation experiment by removing and adding plant litter in plots of mature secondary forests in the Cayey Mountains, Puerto Rico. To test the second hypothesis we performed a greenhouse experiment to examine the influence of a pasture grass species Axonopus compressus and a dominating woody species Miconia prasina of the secondary forests on the number and biomass of the earthworm P. corethrurus. We found in the litter manipulation experiment that earthworm diversity, density and fresh weight were not affected by litter input. However, in the greenhouse experiment, A. compressus increased the number and biomass of P. corethrurus, whereas M. prasina decreased the exotic, endogeic earthworm. Our results suggest that the quantity of litter does not promote rapid changes (<1 year) in native, anecic earthworm diversity, and that the exotic, endogeic P. corethrurus is favored by grass A. compressus compared to the woody plant M. prasina. The shift in vegetation from grass to woody plants promotes the decrease in the density and biomass of the exotic, endogeic P. corethrurus during secondary succession in old tropical pastures.  相似文献   

4.
5.
The potential of tropical earthworms as bio-indicators of forest degradation by human-induced activities was assessed at a landscape level in the Ivory Coast. The study site covered 400 ha and was characterized by a set of land-use types along a gradient of perturbation from semi-deciduous forest, through reforestation, fallow systems to cultivated annual crops. Samples were taken on a grid at each sampling point and earthworms were hand-sorted from a 25 × 25 × 30-cm soil monolith. Results showed a potential increase in relative populations (number: +53.1%, biomass: +94.8%) of species in the earthworm communities following forest conversion. Furthermore, the impact of land-use change was higher in relation to land-use intensification in terms of earthworm populations and diversity in intermediate-disturbed systems (Multispecies plantations, old fallows). Earthworm diversity was the most sensitive response to land-use change. The species Dichogaster saliens Beddard 1893, Hyperiodrilus africanus Beddard 1891, Millsonia omodeoi Sims 1986, Dichogaster baeri Sciacchitano 1952, Dichogaster ehrhardti Michaelsen 1898, Agastrodrilus sp., Stuhlmannia palustris Omodeo and Vaillaud 1967 and, to some extent, Millsonia sp. appeared to be most sensitive to land-use change. More field and laboratory investigations are needed to find out the most efficient species to be used in bio-monitoring programmes aimed at preventing ecosystem degradation due to anthropogenic activities in the forest areas of Ivory Coast.  相似文献   

6.
A biofertilisation assay was conducted in Maripasoula (French Guiana), testing the effects of three different organic amendments (manioc peels, sawdust and wood charcoal) and the inoculation of the endogeic earthworm Pontoscolex corethrurus on pod production of Vigna unguiculata sesquipedalis and on soil chemical properties (pH, C, N, total and exchangeable P and K). Pod production was highest with manioc peels as available P increased in the soil. Wood charcoal also had a beneficial effect on pod production as it decreased acidity and increased the C:N ratio in the soil. In sawdust-amended soil, pod production did not differ from that in unamended soil. Inoculation of earthworms at a density of 80 sub-adults m-2 did not significantly affect either pod production or soil nutrient content directly, although it increased the positive effect of manioc peels on pod production. Soil nutrient content, pod production and earthworm density at the end of the experiment were negatively correlated with soil moisture and positively with each other. Despite the strong effect of moisture, this assay demonstrated an interaction between the earthworm P. corethrurus and the legume V. unguiculata sesquipedalis mediated by soil nutrient content and organic matter inputs. We conclude that manioc peels improved soil P availability and were an interesting amendment for legume crops. We discuss also the effect of earthworm inoculation.  相似文献   

7.
《Applied soil ecology》2011,47(3):443-449
Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) is an invasive endogeic earthworm that has colonized most land transformed by human activities in the humid tropics. When installed, populations can change soil physical properties, biogeochemical processes and microbial communities. The aim of this study was to determine whether P. corethrurus establishment is a result of (1) a competitive exclusion of native earthworm species or (2) the exploitation of a new niche created by anthropogenic disturbance that native earthworm species cannot use. We tested these hypotheses by doing a survey of earthworm communities in 270 sites that represented the diversity of land use systems encountered in two contrasted regions of the Amazonian arc of deforestation located in Brazil and Colombia respectively. When present in forests, P. corethrurus had no negative effect on the native species communities that had similar (epigeic species) or even higher densities (endogeic species) in the presence of the invasive species. These results suggest the absence of competitive exclusion.The first two axes of a PCA multivariate analysis of communities represented the densities of native species (axis 1) and P. corethrurus (axis 2) respectively. This suggests that respective densities of the two groups respond to different conditions and that their variations are independent. The density of P. corethrurus co-varied with soil N content and pH in Colombian sites while the densities of other species did not. Our results thus suggest that this invasive species, unlike native species, is able to feed and develop in environments where litter resources are decreased while soils have been enriched in C and nutrients by deforestation and burning. We discuss the reasons why some primary forests in Central America have large populations of P. corethrurus.  相似文献   

8.
雨强和土地利用方式对黄土丘陵区水土流失的影响   总被引:32,自引:10,他引:22  
为了更好掌握黄土丘陵区雨强和土地利用方式对水土流失的影响规律和机理,利用人工降雨模拟器,设计了5种雨强和4种土地利用方式的区组试验,对水土流失进行了定量研究。结果表明:雨强对不同土地利用方式的产流产沙都呈极显著的正效应,4种土地利用方式的地表平均产流产沙与雨强均呈幂函数显著增长趋势;5种雨强的平均地表产流量为林地>休闲耕地>栽培草地>草地,平均产沙量分别为休闲耕地>栽培草地>草地>林地,产流与产沙没有呈现完全的对应关系。如果没有林冠层、灌木层和枯枝落叶层对降雨的截留、阻滞和消弱,林地产流量高于其他土地利用方式,但具有良好的保土效果,而草地具有良好的保水和保土效果。  相似文献   

9.
The invasive earthworm (Pontoscolex corethrurus) is commonly found in rubber plantations of Xishuangbanna, southwestern China. To understand the long-term impact of this invasive earthworm on soil labile organic carbon (LOC), we examined changes in LOC that was protected and unprotected by soil aggregates during a worm-exclusion experiment in rubber plantations of Xishuangbanna. We found that the presence of this invasive earthworm for 20 months increased LOC (up to 35%) protected by aggregates in surface soil layer (0–5 cm). In contrast, the presence of this earthworm increased LOC unprotected by the aggregates and the turnover rate of LOC protected by the aggregates in subsurface soil layer (5–15 cm). Soil total LOC did not differ between the control and worm-exclusion treatments. These findings suggest that the invasion of P. corethrurus can redistribute LOC along soil vertical profiles with accumulation of protected LOC on surface soil layer and unprotected LOC on subsurface soil layer. Earthworms' redistribution of LOC between the protected and unprotected forms and along soil profile may affect long-term soil carbon cycling.  相似文献   

10.
Species effects on earthworm density in tropical tree plantations in Hawaii   总被引:6,自引:0,他引:6  
Summary Tree species differ in the quantity and quality of litter produced, and these differences may significantly affect ecosystem structure and function. I examined the importance of tree species in determining earthworm densities in replicated stands of Eucalyptus saligna Sm. and Albizia falcataria (L.) Fosberg, and in mixed stands (25% albizia and 75% eucalyptus). Mean earthworm densities ranged from 92 m-2 in the pure eucalyptus, to 281 m-2 in the mixture, and a maximum of 469 m-2 in the pure albizia stands. Only two earthworm species were present, Pontoscolex corethrurus and Amynthas gracilis. Leaf biomass on the forest floor was highest in the pure eucalyptus and lowest in the pure albizia stands, whereas the annual fine litterfall production was lowest in the pure eucalyptus and highest in the albizia stands. The N content of fine litterfall was correlated positively with earthworm density, and the fine litterfall biomass: N ratio was correlated negatively with earthworm density. Greater leaf biomass on the forest floor under eucalyptus stands despite lower rates of litterfall suggests that litter quality, rather than litter quantity, was primarily responsible for the greater earthworm density in the albizia stands. Some biogeochemical effects of tree species in the tropics may be mediated through effects on earthworm populations.  相似文献   

11.
Energy crops are of growing importance in agriculture worldwide. This field study aimed to investigate earthworm communities of different intensively cultivated soils during a 2-year period, with special emphasis on annual and perennial energy crops like rapeseed, maize, and Miscanthus. These were compared with cereals, grassland, and fallow sites. Distribution patterns of earthworm abundance, species, and ecological categories were analysed by constrained ordination procedures (redundancy analysis; CANOCO) using a set of environmental variables as predictors, such as CN value of harvest residues, SOC and Nt content, soil pH, soil texture, and land-use intensity. The latter was determined by principal component analysis using average soil coverage and intensity of tillage, weed control, and fertilisation as input variables. It was clearly found that land-use intensity was the dominant regressor for earthworm abundance and total number of species. The diversity of earthworm communities was especially enhanced and showed a more balanced species composition in extensively managed soils under grassland, fallow, and Miscanthus. For the total number of species, Miscanthus (5.1 ± 0.9) took a medium position and neither differed significantly from intensively managed rapeseed (4.0 ± 0.9), cereals (3.7 ± 1.1), and maize sites (3.0 ± 1.4), nor from grassland (6.8 ± 1.5) and fallow (6.4 ± 1.0) sites. Total earthworm abundance ranged between 355 (±132) and 62 (±49) individuals m−2 in fallow and maize sites, respectively.Interestingly, Miscanthus had quite positive effects on earthworm communities although the CN value of harvest residues was very high. It is recommended that Miscanthus may facilitate a diverse earthworm community even in intensive agricultural landscapes.  相似文献   

12.
Earthworms are important processors of soil organic matter (SOM) and nutrient turnover in terrestrial ecosystems. In agroecosystems, they are often seen as beneficial organisms to crop growth and are actively promoted by farmers and extension agents, yet their contribution to agroecosystem services is uncertain and depends largely on management. The Quesungual slash-and-mulch agroforestry system (QSMAS) of western Honduras has been proposed as a viable alternative to traditional slash-and-burn (SB) practices and has been shown to increase earthworm populations, yet the effect of earthworms on soil fertility and SOM in QSMAS is poorly understood. This study examined the role of Pontoscolex corethrurus in QSMAS by comparing their influence on aggregate-associated SOM and fertilizer dynamics with their effects under SB and secondary forest in a replicated field trial. Both the fertilized QSMAS and SB treatments had plots receiving additions of inorganic 15N and P, as well as plots with no inorganic N additions. Earthworm populations were manipulated in field microcosms at the beginning of the rainy season within each management treatment via additions of P. corethrurus or complete removal of existing earthworm populations. Microcosms were destructively sampled at harvest of Zea mays and soils were wet-sieved (using 53, 250 and 2000 μm mesh sizes) to isolate different aggregate size fractions, which were analyzed for total C, N and 15N. The effects of management system were smaller than expected, likely due to disturbance associated with the microcosm installation. Contrary to our hypothesis that earthworms would stabilize organic matter in soil aggregates, P. corethrurus decreased total soil C by 3% in the surface layer (0-15 cm), predominantly through a decrease in the C concentration of macroaggregates (>250 μm) and a corresponding depletion of C in coarse particulate organic matter occluded within macroaggregates. Earthworms also decreased bulk density by over 4%, but had no effect on aggregate size distribution. Within the two fertilized treatments, the QSMAS appeared to retain slightly more fertilizer derived N in smaller aggregate fractions (<250 μm) than did SB, while earthworms greatly reduced the recovery of fertilizer N (34% decrease) in both systems. Although management system did not appear to influence the impact of P. corethrurus on SOM or nutrient dynamics, we suggest the lack of differences may be due to artificially low inputs of fresh residue C to microcosms within all management treatments. Our findings highlight the potential for P. corethrurus to have deleterious impacts on soil C and fertilizer N dynamics, and emphasize the need to fully consider the activities of soil fauna when evaluating agroecosystem management options.  相似文献   

13.
In tropical savannas where soils are generally sandy and nutrient poor, organic farming associated with enhanced soil biological activity may result in increased nutrient availability. Therefore, legumes have been introduced in the humid savanna zone of Côte d’Ivoire, owing to their ability to fix atmospheric N and to continually supply soil with great quantity of organic materials in relatively short time. The main objective of this study was to assess the influence of two legume (Cajanus cajan and Lablab purpureus) cultivations on earthworm communities and P and N availability. Trials were carried out under farmers' field conditions; C. cajan was planted on savanna soils (trial 1) while L. purpureus was established on new Chromolaena odorata-dominated fallow soils (trial 2). Native vegetations were considered as controls. Changes in soil properties (earthworm abundance and diversity, microbial biomass carbon (MBC), and plant available P and N) were assessed using the biosequential sampling. After 1 year, both the legume stands showed a significantly higher density of earthworms, compared with the respective controls. This trend was linked to an increase in the abundance of the detritivores Dichogaster baeri Sciacchitano 1952 and Dichogaster saliens Beddard 1893, and the polyhumic Stuhlmannia zielae Omodeo 1963. Equally, legume had beneficial impacts on the average number of earthworm species, the Shannon–Weaver index of diversity and MBC in savanna (trial 1). Available P and ammonium significantly increased under both legume cultivations and were significantly and concurrently linked to litter quality and earthworm activities as shown by multiple regressions. As a result, legumes could improve nutrient availability in the sandy soils of central Côte d’Ivoire by positively affecting soil biological activity and this could bring farmers to cultivate crops on savanna lands.  相似文献   

14.
The endogeic earthworm Pontoscolex corethrurus (Müller, 1857) was the most abundant species (75%) in soil contaminated with hydrocarbons, mostly benzo(a)pyrene (BaP), in the state of Tabasco (Mexico). The earthworm P. corethrurus was tested for its capacity to remove 100 mg BaP kg−1 from an Anthrosol soil (sterilized or not) and amended with legume Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Baker ex Burck (3%) or the grass Brachiaria humidicola (L.) DC (3%) (recently renamed as Urochloa humidicola (Rendle) Morrone & Zuloaga) in an aerobic incubation experiment. P. corethrurus removed 26.6 mg BaP kg−1 from the sterilized soil and application of B. humidicola as feed increased this to 35.7 mg BaP kg−1 and M. pruriens to 34.2 mg BaP kg−1 after 112 days. The autochthonous microorganisms removed 9.1 mg BaP kg−1 from the unsterilized soil and application of B. humidicola increased this to 18.0 mg BaP kg−1 and M. pruriens to 11.2 mg BaP kg−1. Adding P. corethrurus to the unsterilized soil accelerated the removal of BaP and 36.1 mg kg−1 was dissipated from soil. It was found that the autochthonous microorganisms removed BaP from soil, but addition of P. corethrurus increased the dissipation 4-fold. The endogeic earthworm P. corethrurus can thus be used to remediate hydrocarbon-contaminated soils in tropical regions.  相似文献   

15.
Effects of the fungicide carbendazim and of the insecticide lambda-cyhalothrin on soil invertebrates and litter decomposition under tropical conditions were assessed in ecotoxicological semi-field studies using intact soil-core terrestrial model ecosystems (TMEs) and in a field test applying the litter-bag method. In the TME study, performed indoors under controlled conditions, earthworms, isopods and diplopods were added to intact soil cores and mortality of soil invertebrates and mass loss of leaf litter were assessed. The field study was performed on an abandoned rubber plantation near Manaus (Amazonia, Brazil). The measurement endpoints were abundance of the soil fauna and mass loss of leaf litter. In the TMEs carbendazim caused a decrease in the abundance of the introduced earthworm Pontoscolex corethrurus and, partly, of the milliped Trigoniulus corallinus. In the field carbendazim decreased the abundance of the native earthworm Andiorrhinus amazonius. Lambda-cyhalothrin was toxic to isopods and millipedes in the TMEs, whereas no effect on arthropods was detected in the field. Organic matter breakdown measured as mass loss of leaf litter in TMEs over time revealed that the two tested agrochemicals can have an impact on decomposition at field relevant concentrations. In the field the results were less obvious, due to spatial heterogeneity through which possible effects of the tested agrochemicals could have been masked.  相似文献   

16.
Radopholus similis is a worldwide endoparasitic nematode that greatly hampers banana (Musa acuminata, Cavendish subgroup) productivity. Earthworms are known to closely interact with above-ground and under-ground soil biota and particularly with plants and microfaunal communities. This study was aimed at investigating, under greenhouse conditions, the effects of the earthworm Pontoscolex corethrurus on banana growth and nutrient uptake, and assessing the influences of this earthworm on the development of an inoculated population of R. similis. Six-week-old tissue culture banana plants were submitted to four treatments: with P. corethrurus, R. similis, P. corethrurus+R. similis, and a control with no earthworms or nematodes. At the end of the experiment, the P. corethrurus treatments showed significantly higher leaf surface areas, shoot dry root weights, and root fresh weights than those without earthworms. This root growth enhancement probably contributed to the evident but non-significant decrease in the density of nematodes in the roots, even though earthworms did not reduce the total number of nematodes per whole root system. Moreover, the presence of earthworms slightly alleviated the severity of root damage. N bioavailability in the soil, along with N, Ca, and Mg content of banana plants, were also significantly increased in the presence of earthworms. Our results demonstrated that banana plant growth and nutrition were positively influenced by earthworms. Cropping practices that boost the development of earthworm communities in soil should therefore be promoted to enhance sustainability and to naturally alleviate nematode impact.  相似文献   

17.
Many soil properties influence earthworm populations and activity. To determine which properties are of significance, a broad collection of soils was investigated. Samples from these different soils were kept bare at one site in large plots (3 Mg soil per plot) to liminate crop and weather interference and to isolate the dominating mechanisms of earthworm effects. Earthworm density, biomass, and tunnelling activity were assessed after 5 years of bare fallow. All earthworm parameters varied strongly. Earthworms increased soil respiration by their tunnelling activity, and in turn increased microbial activity and propagated the loss of organic C. Earthworm abundance ranged from 12 to 274 m-2 and was about 10 times greater than on cropped soils. The range in abundance was mainly caused by variations in the numbers of juveniles. The average soil moisture content was the only soil property among the many properties investigated that was consistently correlated with earthworm abundance and biomass. Even after 5 years of bare fallow with almost no addition of fresh plant biomass and with little water loss by plant transpiration, the earthworm population was controlled by water stress and not by food stress. We therefore conclude that high water consumption by productive crops may degrade the habitat for geophagous earthworms.  相似文献   

18.
The aim of the study was to determine the effect of adding two tropical earthworm species, Rhinodrilus contortus and Pontoscolex corethrurus, to mesocosms on the availability of mineral N (NH4 + and NO3 concentrations), soil microbial biomass (bio-N), and the decomposition rates of three contrasting leaf litter species, in a glasshouse experiment. The mesocosms were filled with forest soil and covered with a layer of leaf litter differing in nutritional quality: (1) Hevea brasiliensis (C/N=27); (2) Carapa guianensis (C/N=32); (3) Vismia sp., the dominant tree species in the second growth forest (control, C/N= 42); and, (4) a mixture of the former three leaf species, in equal proportions (C/N=34). At the end of the 97-day experiment, the soil mineral N concentrations, bio-N, and leaf litter weight loss were determined. Both earthworm species showed significant effects on the concentrations of soil NO3 (p<0.01) and NH4 + (p<0.05). Bio-N was always greater in the mesocosms with earthworms (especially with R. contortus) and in the mesocosms with leaf litter of H. brasiliensis (6 µg N g–1 soil), the faster decomposing species, than in the other treatments (0.1–1.6 µg N g–1). Thus, earthworm activity increased soil mineral-N concentrations, possibly due to the consumption of soil microbial biomass, which can speed turnover and mineralization of microbial tissues. No significant differences in decomposition rate were found between the mesocosms with and without earthworms, suggesting that experiments lasting longer are needed to determine the effect of earthworms on litter decomposition rates.  相似文献   

19.
It is well known that earthworm populations tend to increase under no-tillage (NT) practices, but abundances tend to be highly variable. In the present study, data from the literature together with those on earthworm populations sampled in six watersheds in SW Paraná State, Brazil, were used to build a classification of the biological soil quality of NT systems based on earthworm density and species richness. Earthworms were collected in 34 farms with NT aging from 3 to 27 yr, in February 2010, using an adaptation of the TSBF (Tropical Soil Biology and Fertility) Program method (hand sorting of five 20 cm × 20 cm holes to 20 cm depth). Six forest sites were also sampled in order to compare abundances and species richness with the NT systems. Species richness in the 34 NT sites and in the 6 forests ranged from 1 to 6 species. Most earthworms encountered were exotics belonging to the genus Dichogaster (D. saliens, D. gracilis, D. bolaui and D. affinis) and native Ocnerodrilidae (mainly Belladrilus sp.), all of small individual size. In a few sites, individuals of the Glossoscolecidae (P. corethrurus, Glossoscolex sp., Fimoscolex sp.) and Megascolecidae (Amynthas gracilis) families were also encountered, in low densities. Urobenus brasiliensis (Glossoscolecidae) were found only in the forest fragments. In the NT farms, earthworm abundance ranged from 5 to 605 ind m−2 and in the forest sites, from 10 to 285 ind m−2. The ranking of the NT soil biological quality, based on earthworm abundance and species richness was: poor, with <25 individuals per m−2 and 1 sp.; moderate, with ≥25–100 individuals per m−2 and 2–3 sp.; good, with >100–200 individuals per m−2 and 4–5 sp.; excellent, with >200 individuals per m−2 and >6 sp. About 60% of the 34 farms fell into the poor to moderate categories based on this classification, so further improvements to the NT farm's management system are needed to enhance earthworm populations. Nevertheless, further validation of this ranking system is necessary to allow for its wider-spread use.  相似文献   

20.

Purpose

There is a growing interest in the use of soil enzymes as early indicators of soil quality change under contrasting agricultural management practices. In recent years, there has been increasing interest in the use of biochar to improve soil properties and thus soil quality. In addition, earthworms can also be used to ameliorate soil properties. However, there is no literature available on how biochar and earthworms interact and affect soil enzymes. The general objective of the present study was to test the suitability of adding biochar and earthworms in two tropical soils with low fertility status in order to improve their characteristics and productivity.

Materials and methods

Biochars were prepared from four different materials [sewage sludge (B1), deinking sewage sludge (B2), Miscanthus (B3) and pine wood (B4)] on two tropical soils (an Acrisol and a Ferralsol) planted with proso millet (Panicum milliaceum L.). In addition, in order to investigate the interaction between earthworms and biochar, earthworm Pontoscolex corethrurus was added to half of the mesocosms, while excluded in the remaining half. The activities of invertase, β-glucosidase, β-glucosaminidase, urease, phosphomonoesterase and arylsulphatase were determined. The geometric mean of the assayed enzymes (GMea) was used as an integrative soil quality index.

Results and discussion

Overall, earthworms and especially biochar had a positive effect on soil quality. GMea showed B1, B2 and B3 performing better than B4; however, results were soil specific. Plant productivity increased under both biochar and earthworm addition. Fruit productivity and plant growth was enhanced by B1 and B2 but not by B3 or B4.

Conclusions

Enhancements of productivity and soil enzymatic activities are possible in the presence of earthworms and the combination of the practices earthworm and biochar addition can be suggested in low fertility tropical soils. However, scientists should proceed carefully in the selection of biochars as the results of this study show a high specificity in the biochar–soil interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号