首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are 32 species of Flourensia genus with 9 native to Mexico. These species contain compounds with potential use for pest control. In this paper, we report the antifungal activities of ethanol extracts from three endemic species in Coahuila state: Flourensia microphylla, Flourensia cernua, and Flourensia retinophylla. Also, preliminary information on the chemical composition of the extracts is included. Antifungal activity was tested against three pathogens attacking commercial crops: Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. The extracts concentration varied from 10 to 1500 μl l−1. The ANOVA showed highly significant differences (P  0.01) with the extracts, the doses, and on the interaction extract × dose. Inhibition effect was observed from 10 μl l−1 in all three species. Total inhibition was found only with F. cernua and F. retinophylla at 1000 μl l−1 for R. solani, the three species inhibited the three pathogens at 1500 μl l−1. Infrared analysis showed similar absorption signals for the extracts of the three species although in different concentration. This suggests that similar compounds may be present. The control of these pathogens by natural compounds is interesting both for environmental and economic reasons. The use of semiarid lands plants may improve the socioeconomic level of the people within the region.  相似文献   

2.
Miscanthus × giganteus is one of the most promising biomass crops for non-food utilisation. Taking into account its area of origin (Far East), its temperature and rainfall requirements are not well satisfied in Mediterranean climate. For this purpose, a research was carried out with the aim of studying the adaptation of the species to the Mediterranean environment, and at analysing its ecophysiological and productive response to different soil water and nitrogen conditions. A split plot experimental design with three levels of irrigation (I1, I2 and I3 at 25%, 50% and 100% of maximum evapotranspiration (ETm), respectively) and three levels of nitrogen fertilisation (0 kg ha−1: N0, 60 kg ha−1: N1 and 120 kg ha−1: N2 of nitrogen) were studied. The crop showed a high yield potential under well-watered conditions (up to 27 t ha−1 of dry matter). M. × giganteus, in Mediterranean environment showed a high yield potential even in very limited water availability conditions (more than 14 t ha−1 with a 25% ETm restoration). A responsiveness to nitrogen supply, with great yield increases when water was not limiting, was exhibited. Water use efficiency (WUE) achieved the highest values in limited soil water availability (between 4.51 and 4.83 g l−1), whilst in non-limiting water conditions it decreased down to 2.56 and 3.49 g l−1 (in the second and third year of experiment, respectively). Nitrogen use efficiency (NUE) decreased with the increase of water distributed (from 190.5 g g−1 of I0 to 173.2 g g−1 of I2); in relation to N fertilisation it did not change between the N fertilised treatments (N1 and N2), being much higher in the unfertilised control (177.1 g g−1). Radiation use efficiency (NUE) progressively declined with the reduction of the N fertiliser level (1.05, 0.96 and 0.86 g d.m. MJ−1, in 1994, and 0.92, 0.91 and 0.69 g d.m. MJ−1, in 1995, for N2, N1 and N0, respectively).  相似文献   

3.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

4.
Integrated use of organic and inorganic fertilizers can improve crop productivity and sustain soil health and fertility. The present research was conducted to study the effects of application of green manures [sesbania (Sesbania aculeate Poiret) and crotalaria (Crotalaria juncea L.)] and farmyard manure on productivity of rice (Oryza sativa L.) and its residual effects on subsequent groundnut (Arachis hypogaea L.) crop. Rice and groundnut crops were grown in sequence during rainy and post-rainy seasons with and without green manure in combination with different fertilizer and spacing treatments under irrigated conditions. The results showed that application of green manures sesbania and crotalaria at 10 t ha−1 to rice compared to no green manure application significantly increased grain yield of rice by 1.6 and 1.1 t ha−1, and pod yields of groundnut crop succeeding rice by 0.25 and 0.16 t ha−1, respectively. There was no significant difference between the application of crotalaria or farmyard manure at 10 t ha−1 on grain yields of rice, but pod yields of subsequent groundnut crop were greater with application of green manure. There was no significant effect of different spacing 20×15,15×15,15×10 cm2 (333 000; 444 000; 666 000 plant ha−1, respectively) on grain yield of rice. Pod yields of groundnut were significantly greater with closer spacing 15×15 cm2 (444 000 plants ha−1) as compared to spacing of 30×10 cm2 (333 000 plants ha−1). Maximum grain of rice was obtained by application of 120:26:37 kg NPK ha−1 in combination with green manures, whereas maximum pod yield of groundnut was obtained by residual effect of green manure applied to rice and application of 30:26:33 kg NPK ha−1 in combination with gypsum applied to groundnut crop.  相似文献   

5.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

6.
Commercial micropropagation of plants is enhanced with the use of liquid media cultures; however the presence of hyperhydricity is commonly observed in cultures of the succulent plant Agave tequilana Weber cultivar azul, this phenomenon persists even with the use of temporary immersion systems (TIS). Thin cell suspension layer technology is proposed to solve this problem. This technology fuses the advantages of a liquid culture made through cellular dissociation, and the use of solid medium for somatic embryogenesis expression of the species. The technology was evaluated by means of two experiments in order to know the influence of gelling agent phytagel®, and of sucrose concentrations through interaction with three cellular suspension densities. It was clear that concentrations of phytagel at 6, 8, 10 or 12 g l?1 are not significant for embryoid expression of A. tequilana. On the other hand, sucrose at 30 and 60 g l?1 have statistically superior values than concentration of 120 g l?1. A larger cellular density (161 × 103 cells ml?1) gave a statistical difference in number of embryoids. The advantages of thin cell suspension layer were remarkable: it encouraged complete expression of embryoids without transfer to extra media cultures, and a higher number of generated embryoid was obtained. Absence of hyperhydricity was observed in all regenerants.  相似文献   

7.
《Field Crops Research》1999,63(3):237-246
Using data from large, grower-managed fields we investigated the variation in yield of dryland soybean in an area with low and variable summer rainfall, and soils that are variable in depth and poor in phosphorus (P). First, using data from unfertilised, wide-row (0.7 m) crops grown under standard management between 1989 and 1992 (Series 1), we quantified the relationship between yield and W, a rainfall-based estimate of water availability during the period of pod and grain set. Separate functions were established for deep (depth  1 m) and shallow soils (0.75 m  depth  0.5 m). Second, we partially tested these functions using two independent data sets (Series 2 and 3). Third, we evaluated the effects on yield of large (18 kg P ha−1, Series 4) or moderate doses of P fertiliser (8–12 kg P ha−1) in narrow-row crops (0.35 m, Series 5). To investigate water × management interaction we (i) calculated ΔY, the difference between actual yield in Series 4 and 5 and yield calculated with the functions derived from Series 1, and (ii) tested the association between ΔY and actual W. In a set of 24 crops (Series 1), yield varied between 2.1 and 3.1 t ha−1 in deep soils and between 1.3 and 2.6 t ha−1 in shallow soils; non-linear functions described fairly well, the response of yield to W. Fertilisation with 18 kg P ha−1 increased yield by 0.6 t ha−1 irrespective of water availability. The combination of narrow rows and a moderate dose of fertiliser increased yield in 73% of crops in deep soil but only in 53% of crops in shallow soil. There was a positive association between ΔY and W in deep soil but no relationship between these variables in shallow soil. Yield responses to management were thus differentially affected by rainfall in deep and shallow soils.  相似文献   

8.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

9.
The perennial C4 grass Miscanthus has been proposed as a biomass energy crop in Europe. Effects of crop age, irrigation and nitrogen fertilization on biomass and energy yields and N content of Miscanthus were investigated and the energy costs of production determined. After an establishment period of 1 year, cultivation of Miscanthus resulted in a dry matter production of over 37 t ha−1 year−1 over a period of 4 years. Irrigation and nitrogen level greatly affected Miscanthus biomass yield. In absence of N fertilization, irrigation did not modify biomass yield and the effect of irrigation increased with the increase in N level. The average N response ranged from 37 to 50 kg biomass kg−1 N applied. Because the calorific value of Miscanthus biomass (16.5 MJ kg−1) was not affected by irrigation and N fertilization, energy production depended exclusively on biomass yield. Maximum energy yield was 564 GJ ha−1 year−1. Without N supply and irrigation, energy yield was 291 GJ h−1. Net energy yield, calculated as the difference between energy output and input, but without inclusion of drying costs, was 543 GJ ha−1 with N fertilization and irrigation and 284 GJ ha−1 without; the ratios of energy output to input in crop production were 22 and 47, respectively.  相似文献   

10.
The corn dry-grind process is the most widely used method in the U.S. for generating fuel ethanol by fermentation of grain. Increasing demand for domestically produced fuel and changes in the regulations on fuel oxygenates have led to increased production of ethanol mainly by the dry-grind process. Fuel ethanol plants are being commissioned and constructed at an unprecedented rate based on this demand, though a need for a more efficient and cost-effective plant still exists.A process and cost model for a conventional corn dry-grind processing facility producing 119 million kg/year (40 million gal/year) of ethanol was developed as a research tool for use in evaluating new processing technologies and products from starch-based commodities. The models were developed using SuperPro Designer® software and they handle the composition of raw materials and products, sizing of unit operations, utility consumptions, estimation of capital and operating costs, and the revenues from products and coproducts. The model is based on data gathered from ethanol producers, technology suppliers, equipment manufacturers, and engineers working in the industry. Intended applications of this model include: evaluating existing and new grain conversion technologies, determining the impact of alternate feedstocks, and sensitivity analysis of key economic factors. In one sensitivity analysis, the cost of producing ethanol increased from US$ 0.235 l−1 to US$ 0.365 l−1 (US$ 0.89 gal−1 to US$ 1.38 gal−1) as the price of corn increased from US$ 0.071 kg−1 to US$ 0.125 kg−1 (US$ 1.80 bu−1 to US$ 3.20 bu−1). Another example gave a reduction from 151 to 140 million l/year as the amount of starch in the feed was lowered from 59.5% to 55% (w/w).This model is available on request from the authors for non-commercial research and educational uses to show the impact on ethanol production costs of changes in the process and coproducts of the ethanol from starch process.  相似文献   

11.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

12.
A 20-year field experiment was employed with the aim of evaluating the effect of tillage systems on biological, chemical and physical aspects of the soil, and to establish whether there was a correlation of these parameters with the incidence of charcoal rot (Macrophomina phaseolina) of soybean and crop yield. The tillage systems evaluated were direct seeding (DS), DS + scarifier (DS + S), minimum tillage (MT) and conventional tillage (CT). DS presented higher values than CT in culturable total fungi (26.33 × 105 vs. 2.33 × 105 CFU g−1 dry soil), total bacteria (182 × 107 vs. 64 × 107 CFU g−1 dry soil), microbial respiration (0.77 mg CO2 g−1 week−1 vs. 0.45 mg CO2 g−1 week−1) and fluorescein diacetate (FDA) hydrolysis (4.17 ug fluorescein g−1 h−1 vs. 1.70 ug fluorescein g−1 h−1 in CT. Fungal and bacterial community fingerprints, by terminal restriction fragment length polymorphism (T-RFLP) analysis, of Intergenic spacer regions of rRNA and 16S rRNA genes, respectively, were influenced by the tillage system. Also FAME (fatty acid methyl ester) profiles showed that microbial community structure in DS and CT was clearly different. DS samples contained significantly higher total microbial biomass than the other tillage treatments, but there were no significant differences in fungal biomass or any consistent trend with respect to stress index. Our results showed that microbial communities were more abundant and active in DS than in CT in response to high nutrient content in soil. Indeed, DS systems presented higher soil OM, total N, K and Ca than CT. Electrical conductivity and aggregate stability (AS) were also improved by DS. Soybean grown in high-quality soil was not affected by charcoal rot, however, under CT, disease incidence in soybean was 54%. These differences were correlated to the higher microbial abundance and activity under DS, the biological component being a key factor determining soil capacity to suppress the soilborne pathogen.  相似文献   

13.
《Field Crops Research》1999,61(1):23-35
Field experiments were conducted to investigate the performance of temperate legume species in rice-based cropping systems in a warm-temperate environment in Nepal. Over the period 1994–1996, various legume species were grown during the winter season (October–May) in the Kathmandu valley (27° N, 1350 m asl) with the aim of evaluating their biomass production and N fixation. A wide range of legume species including food, feed and green manure crops proved to be very well adapted to the winter growing conditions in this environment. The cultivation of temperate legume crops therefore, constitutes an alternative to traditional cropping practices such as growing wheat or leaving the land fallow. The temperate species appeared to capitalise on generally favourable growing conditions such as long growing season, low pest and disease pressure, high radiant energy receipt and cool night temperatures. However, performance varied greatly between species and years. Total dry matter yields ranged from 2 to 20 t ha−1 obtained with lentil (Lens culinaris Medic) and bitter lupin (Lupinus mutabilis), respectively. Highest seed yields were produced by fababean (Vicia faba) (5 t ha−1) and field pea (Pisum sativum var. arvense) (3 t ha−1) in the first season. Nitrogen yields and quantities of N fixed ranged from 18 to 481 kg ha−1 and from 0 to 463 kg ha−1, respectively. Large amounts of N were fixed by species such as fababean, Persian clover (Trifolium resupinatum) and bitter lupin. Early sowing in autumn was shown to be beneficial for some crops such as fababean, vetch (Vicia benghalensis) and Persian clover. In these cases, it is, therefore, important to reduce the turn-around interval after rice. Further research is required to fully determine the potential of temperate legume species in these environments with particular emphasis given to the identification of the most adapted cultivars and to reduce the need for irrigation of these winter crops.  相似文献   

14.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

15.
Artemisia annua L. is an aromatic-antibacterial herb that destroys malarial parasites, lowers fevers and checks bleeding, and of which the secondary compound of interest is artemisinin. The objective of the present study was to determine yield, yield components and artemisinin content of A. annua L. grown under four nitrogen applications (0, 40, 80 and 120 kg ha−1) in the Çukurova region of Turkey in 2004 and 2005. Field trials were conducted at Çukurova University, Agricultural Faculty Field Crops Department. In the study, plant height, number of branches, fresh herbage yield, dry herbage yield, fresh leaf yield, dry leaf yield, essential oil content and artemisinin content (by high performance liquid chromatography, HPLC) were examined. By analysis of variance, nitrogen doses had no any statistical effect on the traits investigated except for artemisinin content. Artemisinin content of the dried leaves were significantly affected by nitrogen applications, which varied from 6.32 to 27.50 mg 100 g−1. Contents were from 120 and 80 kg ha−1 nitrogen for the years of 2004 and 2005, respectively.  相似文献   

16.
Bioconverted eicosapentaenoic acid (bEPA), obtained from Pseudomonas aeruginosa PR3, was assessed for its in vitro and in vivo anti-fungal potential. Mycelial growth inhibition of the tested plant pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Fusarium solani, Phyptophthora capsici, Sclerotinia sclerotiorum and Colletotrichum capsici) was measured in vitro. bEPA at the concentration of 5 μl/ml inhibited 52–60% fungal mycelial growth for all of the plant pathogens in vitro except S. sclerotiorum. Minimum inhibitory concentrations (MICs) of bEPA were found in the range of 250–500 μg/ml. Also, bEPA had a detrimental effect on spore germination for all the tested plant pathogens. Three plant pathogenic fungi (F. oxysporum, P. capsici and C. capsici) were subjected to an in vivo anti-fungal screening. bEPA at the initial concentration of 3000 μg/ml had a 100% anti-fungal effect against all of the tested plant pathogens. Concentrations of bEPA corresponding to 1500, 500 and 300 μg/ml were applied to the plants and revealed promising anti-fungal effects, supporting bEPA as a potential anti-fungal agent.  相似文献   

17.
《Field Crops Research》2006,95(2-3):383-397
Genetic gains in grain yield and related phenotypic attributes have been extensively documented in maize (Zea mays L.), but the effect of breeding on the physiological determinants of grain yield is yet poorly understood. We determined genetic gains in grain yield and related physiological traits for seven maize hybrids developed for the central region of Argentina between 1965 and 1997. Gains were expressed as a function of the year of release (YOR). Hybrids were cropped in the field at five stand densities (from almost isolated plants to supra-optimal levels) during two contrasting growing seasons (E1 and E2). Water and nutrient stress were prevented and pests controlled. Genetic gains in grain yield (≥13.2 g m−2 YOR−1) were mainly associated with improved kernel number, enhanced postsilking biomass production, and enhanced biomass allocation to reproductive sinks, but computed gains were affected by the environment. Differences among hybrids arose at the start of the critical period, and were evident as improved mean radiation use efficiency (≥0.026 g MJ−1 YOR−1), enhanced plant growth rate at near optimum stand density (≥0.04 g pl−1 YOR−1), and improved biomass partitioning to the ear around silking (0.0034 YOR−1, only for E1). Improved biomass production after silking was related to an increased light interception (≥4.7 MJ m−2 YOR−1), and allowed for an almost constant source–sink ratio during grain filling. This trend determined no trade-off between kernel number and kernel weight. In contrast to previous studies, genetic gains were detected for potential productivity (e.g., maximum grain yield) on a per plant basis (i.e., under no resource competition), a promising aspect for the improvement of crop grain yield potential.  相似文献   

18.
《Field Crops Research》2006,99(1):24-34
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g−1 up to beginning of seed growth, and then it declined linearly to 30 mg g−1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g−1. Stem [N] decreased from 30 mg g−1 early in the season to 8 mg g−1 in senesced stems at maturity. Pod [N] was constant (35 mg g−1), but grain [N] decreased from 60 mg g−1 early in seed growth to 43 mg g−1 at maturity. Total N accumulation ranged between 9 and 30 g m−2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g−1 where total biomass was <218 g m−2 and during early growth period, but it decreased to 0.0176 g g−1 during the later growth period when total biomass was >218 g m−2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37–72% of leaf N and 12–56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.  相似文献   

19.
《Field Crops Research》2001,71(3):159-171
The burgeoning poultry industry in the southeastern US is presenting a major environmental problem of safe disposal of poultry litter (PL). In a comprehensive study, we explored ways of PL use in conservation tillage-based cotton (Gossypium hirsutum L.) production systems on a Decatur silt loam soil in north Alabama, from 1996 to 1999. The study reported here-in presents the residual effects of PL applied to cotton in mulch-till (MT) and no-till (NT) conservation tillage systems in 1997 and 1998 cropping seasons on N uptake, growth, and yield of rye (Secale cereale, L.) cover crop and rotational corn (Zea mays L.) in 1999. Rye was grown without additional N, whereas corn was grown at three inorganic N levels (0, 100, and 200 kg N ha−1). Poultry litter was applied to cotton in 1997 and 1998 at 0, 100, and 200 kg N ha−1. Residual N from PL applied to cotton in 1997 and 1998 produced up to 2.0 and 17.3 Mg ha−1, respectively, of rye cover crop and corn biomass (includes 7.1 Mg ha−1 of corn grain yield) without additional fertilizer. Therefore, in addition to supplying crop residues which reduce soil erosion, increase soil organic matter, and conserve soil moisture, the rye cover crop was able to scavenge residual N left by the cotton crop, which would otherwise, be at risk of being leached and pollute groundwater resources. Poultry litter applied to cotton also increased corn grain quality as shown by up to 100% increase in grain N content compared to the 0N treatment. Using PL with a slower rate of N release compared to inorganic fertilizer to meet some of the N requirements of corn, will not only reduce N fertilizer costs for corn, but will also reduce the risk of nitrate N leaching into groundwater. The maximum amount of crop residues added to the cotton based cropping system by residual N from PL and inorganic N was 21.3 Mg ha−1. This will lead to an increase in soil organic carbon and soil structure in the long term and a reduction in soil erosion, thereby further improving soil productivity, while at the same time, protecting the environment from nitrate pollution and soil degradation. Our study demonstrates that cotton under conservation tillage system in combination with rye cover crop and rotational corn cropping could use large quantities of PL thereby avoiding serious potential environmental hazards.  相似文献   

20.
《Field Crops Research》1999,63(2):99-112
Field experiments were conducted at Gatton and Dalby in southeastern Queensland to determine parameters associated with radiation interception and biomass and nitrogen (N) accumulation for the ley legume species, phasey bean (Macroptilum lathyroides (L.) Urban) and vigna, (Vigna trilobata (L.) Verdc.). Sesbania (Sesbania cannabina Retz.), a native legume species, and soybean (Glycine max (L.) Merrill)) were included in the study for comparison. The most important differences between species related to differences in radiation interception, radiation-use efficiency (RUE), N-accumulation efficiency and the partitioning of N to plant parts. During early growth, soybean intercepted more radiation than the other species, primarily because of its greater leaf area index (LAI). Sesbania had the highest RUE (1.08 g MJ−1) followed by phasey bean (0.94 g MJ−1), soybean (0.89 g MJ−1) and vigna (0.77 g MJ−1). The efficiency of N-accumulation was greater in soybean (0.028 g N g−1) and phasey bean (0.030 g N g−1) than in vigna (0.022 g N g−1) and sesbania (0.021 g N g−1). In all species, the proportion of N allocated to leaves declined throughout the experimental period, being more rapid in soybean than in sesbania and phasey bean. Despite this decline in total N partitioned to the leaves, both soybean and phasey bean maintained a relatively stable specific leaf nitrogen (SPLN) throughout the experimental periods although sesbania and vigna displayed rapid decreases in SPLN. The large variation between species in RUE and N-accumulation efficiency indicates that the development of ley legume cultivars with a combination of traits for more efficient legume production, water use and soil N-accumulation in the water-limited environments of the grain belt of eastern Australia may be possible. The sensitivity of forage production, water use and soil N-accumulation to variation in RUE and N-accumulation efficiency needs to be quantified using modeling techniques prior to embarking on screening programs to select appropriate germplasm for evaluation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号