首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A disease caused by Alternaria alternata occurred on the leaves of European pear cultivar Le Lectier in Niigata Prefecture, Japan, and was named black spot of European pear. In conidial inoculation tests, the causal pathogen induced not only small black lesions on the leaves of European pear cultivar Le Lectier, but severe lesions on the leaves of apple cultivar Red Gold, which is susceptible to the A. alternata apple pathotype (previously called A. mali) causing Alternaria blotch of apple. Interestingly, the apple pathotype isolate showed the same pathogenicity as the European pear pathogen. HPLC analysis of the culture filtrates revealed that A. alternata causing black spot of European pear produced AM-toxin I, known as a host-specific toxin of the A. alternata apple pathotype. AM-toxin I induced veinal necrosis on leaves of Le Lectier and General Leclerc cultivars, both susceptible to the European pear pathogen, at 5?×?10?7 M and 10?6 M respectively, but did not affect leaves of resistant cultivars at 10?4 M. PCR analysis with primers that specifically amplify the AM-toxin synthetase gene detected the product of expected size in the pathogen. These results indicate that A. alternata causing black spot of European pear is identical to that causing Alternaria blotch of apple. This is the first report of European pear disease caused by the A. alternata apple pathotype. This study provides a multiplex PCR protocol, which could serve as a useful tool, for the epidemiological survey of these two diseases in European pear and apple orchards.  相似文献   

2.
Drimia maritima (squill) is a historically important medicinal plant. During the spring of 2016, small, yellow leaf spots, which became brown and finally necrotic, were observed on squill plants in Kohgiluyeh and Boyer-Ahmad Provinces in Iran. A fungus was consistently isolated from infected leaves and identified as Alternaria alternata based on morphological and phylogenetic analyses. Pathogenicity tests confirmed A. alternata to be the causal agent of the newly observed leaf spot disease. This is the first report of leaf spot on D. maritima caused by A. alternata in the world.  相似文献   

3.
We examined the potential for biological control of black rot of broccoli, caused by Xanthomonas campestris pv. campestris (Xcc), using nonpathogenic Xanthomonas sp. strain 11-100-01 (npX) mixed with bacteriophage XcpSFC211 (pXS). Inoculation of intact broccoli plants in greenhouse trials with either npX or pXS did not control black rot. After injured plant inoculation, however, npX alone or npX with pXS significantly controlled black rot. When a mixed suspension of npX with pXS was placed on a membrane filter, then washed with distilled water and air-dried, a substantial amount of pXS adsorbed to the surface of npX. In a field trial, broccoli plants were sprayed with a suspension of npX with pXS, then inoculated with Xcc. A meta-analysis of the results from five field trials showed an integrated risk ratio (IRR, the ratio of disease incidence in inoculated broccoli plants to the incidence in control plants) of 0.69 after treatment with only npX and 0.59 with npX with pXS, indicating that black rot incidence was significantly reduced by each treatment. The difference between these two treatments was also significant. IRR was 1.24 when comparing suppression by npX with pXS and that by basic copper sulfate wettable powder; thus, their control was comparable. The combination of npX with pXS improved the preventive effect against black rot. This is the first report describing that a nonpathogenic Xanthomonas sp. strain mixed with a bacteriophage effectively controlled black rot of broccoli in field trials.  相似文献   

4.
This is the first report of Alternaria leaf spot disease on coriander (Coriandrum sativum L.) in South Africa. Using the agar plate method, Alternaria alternata was isolated from coriander seed lots together with four other fungal genera, which included Aspergillus, Fusarium, Penicillium and Rhizopus. Standard seed germination tests of coriander seed lots infected with seed-borne mycoflora showed a positive correlation with the number of diseased seedlings (r?=?0.239, p?<?0.01). Pathogenicity tests demonstrated that this seed-borne A. alternata was pathogenic on coriander and symptoms on leaves first appeared as small, dark brown to black, circular lesions (<5 mm diam.) that enlarged and coalesced to form dark brown blotches as time progressed. Leaf spot disease was most severe (64%) on wounded leaves inoculated with A. alternata. Re-isolation of A. alternata from diseased coriander plants satisfied the Koch’s postulates, thus confirming it as the causal agent of Alternaria leaf spot disease. Parsimony analysis based on rpb2 (GenBank Accession No. KT895947), gapdh (KT895949) and tef-1α (KT895945) sequences confirmed identity of the Alternaria isolate, which grouped within the A. alternata clade. Alternaria alternata was shown to be transmitted from infected coriander seed to the developing plants.  相似文献   

5.
In September 2014, Phytophthora rot on wasabi plants [Wasabia japonica (Miq.) Matsum.] was found for the first time in the city of Okutama, Tokyo, Japan. A Phytophthora sp. strain was constantly isolated from brown stem bases and rhizomes of infected plants. The same symptoms as those observed in the field were produced in vitro through inoculation of test plants with the isolated Phytophthora sp. The fungus was identified as Phytophthora drechsleri based on morphological and DNA sequence comparison. Phytophthora rot, “eki-byo” in Japanese, is proposed for this disease common name.  相似文献   

6.
Native Trichoderma spp. were isolated from agricultural fields in several regions of Ecuador. These isolates were characterized via morphological observation as well as molecular phylogenetic analysis based on DNA sequences of the rDNA internal transcribed spacer region, elongation factor-1α gene and RNA polymerase subunit II gene. Fifteen native Trichoderma spp. were identified as T. harzianum, T. asperellum, T. virens and T. reesei. Some of these strains showed strong antagonistic activities against several important pathogens in Ecuador, such as Fusarium oxysporum f. sp. cubense (Panama disease) and Mycosphaerella fijiensis (black Sigatoka) on banana, as well as Moniliophthora roreri (frosty pod rot) and Moniliophthora perniciosa (witches’ broom disease) on cacao. The isolates also showed inhibitory effects on in vitro colony growth tests against Japanese isolates of Fusarium oxysporum f. sp. lycopersici, Alternaria alternata and Rosellinia necatrix. The native Trichoderma strains characterized here are potential biocontrol agents against important pathogens of banana and cacao in Ecuador.  相似文献   

7.
Alternaria genus includes many plant pathogens on numerous hosts, causing leaf spots, rots and blights. Alternaria blight has been observed as one of the important fungal diseases of pistachio (Pistacia vera L.) as well as its wild relatives (P. terebinthus, P. lentiscus, P. khinjuk, P. atlantica, P. mutica) in Turkey. Alternaria species were sampled from Pistacia spp. hosts from different geographic regions in Turkey during field trips in late spring to early fall of 2013. Alternaria blight symptoms were observed mainly on fruits and rarely on leaves. Four hundred and twenty two of the isolates were morphologically defined as A. alternata, A. tenuissima, A. arborescens and also intermediate morpho-species between A. alternata/A. arborescens. Pathogenicity of the isolates was confirmed with host inoculations on detached fruits. Mating types of 270 isolates of Alternaria spp. from the collection were identified using a PCR-based mating type assay that amplifies either a MAT1-1 or a MAT1-2 fragment from the mating locus. Although a strongly clonal population structure was expected due to the putative asexual reproduction of these fungi, both idiomorphs were detected at equal frequencies at several different spatial scales. The distribution of mating types within each geographic region, within host species as well as in overall collection was not significantly different from 1:1. Amplified fragments of partial idiomorph sequences were obtained for representative isolates. Parsimony trees were depicted based on sequence data of mating type genes for these representative isolates as well as some other Alternaria species obtained by Genebank. Several point mutations presented a few clusters which are supported by high bootsrapped values. The Alternaria blight disease agents both from cultivated and wild hosts were pathogenic on pistachio which may cause difficulties to control the disease because of extensity of pathogen sources. Besides, equal mating type distribution of the pathogen at both geographic and host species levels suggests a potential for sexual reproduction of Alternaria spp. in Turkey.  相似文献   

8.
Sunflower (Helianthus annuus L.) is an important oilseed crop in South Africa, and is grown in rotation with maize in some parts of North West, Limpopo, Free State, Mpumalanga and Gauteng provinces. Alternaria leaf blight is currently one of the major potential disease threats of sunflower and is capable of causing yield losses in all production regions. Alternaria helianthi was reported as the main cause of Alternaria leaf blight of sunflower in South Africa; however small-spored Alternaria species have been consistently isolated from leaf blight symptoms during recent surveys. The aim of this study was to use morphological and molecular techniques to identify the causal agent(s) of Alternaria blight isolated from South African sunflower production areas. Alternaria helianthi was not recovered from any of the sunflower lesions or seeds, with only Alternaria alternata retrieved from the symptomatic tissue. Molecular identification based on a combined phylogenetic dataset using the partial internal transcribed spacer regions, RNA polymerase second largest subunit, glyceraldehyde-3-phosphate dehydrogenase, translation elongation factor and Alternaria allergen gene regions was done to support the morphological identification based on the three-dimensional sporulation patterns of Alternaria. Furthermore, this study aimed at evaluating the pathogenicity of the recovered Alternaria isolates and their potential as causal agents of Alternaria leaf blight of sunflower. Pathogenicity tests showed that all the Alternaria alternata isolates tested were capable of causing Alternaria leaf blight of sunflower as seen in the field. This is the first report of A. alternata causing leaf blight of sunflower in South Africa.  相似文献   

9.
Early blight and brown spot, caused by respectively Alternaria solani and Alternaria alternata, can lead to severe yield losses in potato-growing areas. To date, fungicide application is the most effective measure to control the disease. However, in recent years, a reduced sensitivity towards several active ingredients has been reported. To shed light on this issue, Alternaria isolates were collected from different potato fields in Belgium during two growing seasons. Subsequently, the sensitivity of these isolates was assessed using four widely used fungicides with different modes of action. Demethylation inhibitors, quinone outside inhibitors, a dithiocarbamate and a carboxylic acid amide were included in this study. Although all fungicides reduced spore germination and vegetative growth of Alternaria species to some extent, the interspecies sensitivity was very variable. In general, A. solani was more suppressed by the fungicides compared to A. alternata. The effectiveness of the dithiocarbamate mancozeb was high, whereas the quinone outside inhibitor azoxystrobin showed a limited activity, especially towards A. alternata. Therefore, a subset of the A. alternata and A. solani isolates was tested for the presence of, respectively, the G143A substitution and the F129L substitution in the cytochrome b. The frequency of A. alternata isolates bearing the resistant G143A allele (approximately 65%) was comparable in both sampling years, although sensitivity of isolates decreased during the growing season. This finding points to a shift of the population towards resistant isolates. Both the European genotype I and American genotype II were present in the A. solani population, with genotype I being the most prevalent. None of the genotype I isolates carried the F129L substitution, whereas in 83% of the genotype II isolates this substitution was present. Our results demonstrate for the first time that the Belgian Alternaria population on potato comprises a considerable broad spectrum of isolates with different sensitivity to fungicides.  相似文献   

10.
Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological investigations followed with physiological studies done on this new species: Fusarium ershadii sp. nov can be distinguished by its conidial morphology. Both isolates of Fusarium ershadii were shown to be pathogenic to the monocot Asparagus officinalis when inoculated on roots and induced hollow root symptoms within two weeks in Asparagus officinalis seedlings. In comparison mild disease symptoms were observed by the same strains on Musa acuminata seedlings.  相似文献   

11.
This investigation examines the effects of pH and titratable acidity on the growth and developments of a strain of Monilinia laxa (Aderhold & Ruhland) at seven different pH levels in Potato Dextrose Agar media and on peach fruit from formation to commercial maturity. The fungi growth was obtained by daily measurement of mycelia on the pH amended Potato Dextrose Agar. The sporulation performance was determined after 30 days of culture incubation. Fruits were inoculated with M. laxa, from fruit set to maturity, on weekly basis for brown rot susceptibility. The pathogen development, in vitro, was affected, by the pH (2.4–11.52) amended nutrient media. M. laxa exhibited variation in its growth and sporulation capacities on the seven pH amended PDA, preferring relatively moderate acidic conditions for optimum performance. In the in vitro analysis, there was mycelia growth at pH 2.40 to 8.84, while pH 11.52 did not support any mycelia growth. There was a continuous and stable increase in weight of fruit as it developed whereas the fruit size increased, then decreased and finally increased as the fruit develops. The acidity dynamics exhibited a non-sinusoidal waveform through the growth and development of the fruit. In all these characteristic variations, M. laxa did not develop infection or shown any brown rot incidence in the fruit until the period of commercial maturity.  相似文献   

12.
Hibiscus syriacus, as a national flower of Korea, is most popularly used for ornamental purposes and includes numerous cultivars, and it is widely planted in temperate zones that feature hot summers. We investigated Choanephora flower rot on H. syriacus from 2012 to 2014 in Korea and Japan and confirmed Choanephora infection in several localities in both countries. Here, our objectives were to identify the main causal agent of Choanephora flower rot on H. syriacus and describe its morphological and molecular characteristics. We identified 44 out of 50 isolates as Choanephora cucurbitarum and the remainder as C. infundibulifera based on morphological characterization and phylogenetic analysis. The sequences of the internal transcribed spacer region (ITS) of ribosomal DNA and the D1/D2 region of the large subunit (LSU) rDNA of examined isolates were compared with sequences obtained from GenBank, and the analysis of the results revealed 100 % identity with the corresponding sequences of C. cucurbitarum and C. infundibulifera strains. Classification of the Choanephora species performed here according to the key described by Kirk (1984) corresponded with the results of the phylogenetic analysis of this study. Through intraspecific and interspecific mating tests, the characteristics of zygospore were described in details. Pathogenicity tests using both species showed the same symptoms, causing blossom blight and soft rot on the flowers, which were identical to those observed in the field. All identified causal agents of Choanephora rot were indeed Choanephora species, where C. cucurbitarum was identified in the majority, while the others were in the minority of examined samples.  相似文献   

13.
Trichoderma spp. are used as antagonists against different pathogens. Despite many possibilities of using Trichoderma as an antagonist, there are gaps in the knowledge of the interaction between Trichoderma, cassava and Scytalidium lignicola. This fungus causes cassava black root rot and is an inhabitant of the soil, so it is difficult to control. Antagonists may contribute to the possible induction of resistance of plants because, when exposed to such pathosystems, plants respond by producing antioxidative enzymes. The test for potential inhibition of growth of S. lignicola CMM 1098 in vitro was performed in potato-dextrose-agar with two Trichoderma strains T. harzianum URM3086 and T. aureoviride URM 5158. We evaluated the effect of the two selected Trichoderma to reduce the severity of cassava black root rot and shoots. Subsequently, the production of enzymes (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase) was evaluated in cassava plants. All two Trichoderma strains show an inhibition of the growth of S. lignicola CMM 1098. The most efficient was T. harzianum URM 3086, with 80.78% of mycelial growth inhibition. T. aureoviride URM 5158 was considered the best chitinase producer. All treatments were effective in reducing severity, especially treatments using Trichoderma. Cassava plants treated with T. aureoviride URM 5158 had the highest enzyme activity, especially peroxidase and ascorbate peroxidase. Trichoderma harzianum URM3086 and Trichoderma aureoviride URM 5158 were effective in reducing the severity of cassava black root rot caused by S. lignicola CMM 1098.  相似文献   

14.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

15.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

16.
Tomato fruits are susceptible to infection by Alternaria species. In addition, Alternaria species may contaminate the fruits with mycotoxins. There is thus interest in control systems to minimise pathogenicity and control toxin production. The objectives of this study were to examine the effect of plant extracts of Eucalyptus globulus and Calendula officinalis on the growth of strains of Alternaria alternata and A. arborescens, on pathogenicity of tomato fruits and mycotoxin production. The growth bioassays showed that the ethanolic and chloroformic fractions of E. globulus were the most effective in reducing growth of A. alternata (66–74 %) and A. arborescens (86–88 %), respectively at 2500 μg/g. The effects of plant extracts on mycotoxin biosynthesis were variable and strain dependent. The most effective fractions in decreasing mycotoxin accumulation were the ethanolic and chloroformic extracts of E. globulus, which reduced tenuazonic acid by 89 %, alternariol by 75–94 % and almost complete inhibition of alternariol monomethyl ether. All the tested fractions reduced percentage of infected tomato fruits when compared to the controls. The ethanolic and chloroformic fractions of E. globulus completely inhibited growth of A. alternata and A. arborescens on unwounded fruits and reduced the aggressiveness on wounded fruits of strains of both species significantly.  相似文献   

17.
Soft rot and blackleg of potato caused by pectinolytic bacteria lead to severe economic losses in potato production worldwide. To investigate the species composition of bacteria causing soft rot and black leg of potato in Norway and Poland, bacteria were isolated from potato tubers and stems. Forty-one Norwegian strains and 42 Polish strains that formed cavities on pectate medium were selected for potato tuber maceration assays and sequencing of three housekeeping genes (dnaX, icdA and mdh) for species identification and phylogenetic analysis. The distribution of the species causing soft rot and blackleg in Norway and Poland differed: we have demonstrated that mainly P. atrosepticum and P. c. subsp. carotovorum are the causal agents of soft rot and blackleg of potatoes in Norway, while P. wasabiae was identified as one of the most important soft rot pathogens in Poland. In contrast to the other European countries, D. solani seem not to be a major pathogen of potato in Norway and Poland. The Norwegian and Polish P. c. subsp. carotovorum and P. wasabiae strains did not cluster with type strains of the respective species in the phylogenetic analysis, which underlines the taxonomic complexity of the genus Pectobacterium. No correlation between the country of origin and clustering of the strains was observed. All strains tested in this study were able to macerate potato tissue. The ability to macerate potato tissue was significantly greater for the P. c. subsp. carotovorum and Dickeya spp., compared to P. atrosepticum and P. wasabiae.  相似文献   

18.
Ethylene has been shown to promote spore germination and hyphal growth in the phytopathogenic fungus Alternaria alternata. However, little is known about the ethylene biosynthetic pathway in this fungus. In the present study, the ethylene biosynthetic pathway in A. alternata was investigated to explore ethylene-associated virulence of this fungus. The strain A0 of A. alternata did not produce ethylene on basal medium with different possible precursors or intermediates for ethylene biosynthesis (glutamate, aspartate, 2-oxoglutarate and 1-aminocyclopropano ?1-carboxylic acid). However, ethylene production was observed when methionine was added as a precursor to the medium and was further promoted by continuous light illumination. Furthermore, addition of 2-keto-4-methylthiobutyric acid (KMBA) promoted ethylene production in the absence of methionine, indicating that the KMBA pathway was mainly responsible for ethylene biosynthesis in this fungus. The strain A0 was inoculated into grape berries to examine the effect of ethylene production on its virulence (as assessed by lesion formation at the inoculation site). The results indicated that higher ethylene production caused larger lesion formation. Similar results were also obtained when isolates of A. alternata, obtained from infected grapes, were inoculated. Thus, the present study thus demonstrated that A. alternata produces ethylene via the KMBA pathway and utilizes it for enhanced virulence expression during infection.  相似文献   

19.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

20.
This study was conducted to investigate the Alternaria species associated with leaf spot of date palm and wheat in Oman. Out of 98 date palm leaf samples and 146 wheat leaf samples, Alternaria was isolated from 27 and 23% of the samples developing leaf spot symptoms, respectively. Identification of Alternaria isolates using sequences of the internal transcribed spacer region of the ribosomal RNA (ITS rRNA), glyceraldehyde-3-phosphate dehydrogenase (GPDH), translation elongation factor (TEF) and RNA polymerase II subunit (RPB2) genes, showed that the isolates belong to seven Alternaria species or species complexes. A. burnsii - A. tomato and A. arborescens species complexes (58 and 4%, respectively) and A. alternata (38%) were the species recovered from the symptomatic date palm leaves. A. alternata (67%), A. burnsii - A. tomato species complex (15%), A. jacinthicola (3%), A. ventricosa (3%), A. slovaca (6%) and Alternaria caespitosa (6%) were isolated from wheat. Pathogenicity test showed that tested isolates of A. alternata (DPM19, WDK12), A. burnsii - A. tomato species complex (DPM31), A. jacinthicola (WBR4) and A. slovaca (WDK9, WDK7) were pathogenic on date palm, while A. alternata (DPM19, WDK12), A. burnsii - A. tomato species complex (DPM31, WDK11) and A. slovaca (WDK9, WDK7) were pathogenic on wheat. This is the first report of date palm and wheat as new hosts for A. burnsii - A. tomato species complex and the first reports of A. burnsii - A. tomato species complex, A. caespitosa A. slovaca, and A. ventricosa in Oman. The study shows that several species of Alternaria are associated with leaf spot in date palm and wheat in Oman, with some isolates having the ability to cause infection in both hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号